X
xilaxilo
bài 6 nè, hiz toàn là dạng 0/0 thế
[TEX]6/ \lim_{x\to0} \ \frac{\sqrt{2}-\sqrt{1+cosx}}{sin^2x}[/TEX]
[tex]\lim_{x\to0} \ \frac{(\sqrt{2}-\sqrt{1+cosx})(\sqrt{2}+\sqrt{1+cosx})}{(1-cosx)(1+cosx)(\sqrt{2}+\sqrt{1+cosx})}[/tex]
[tex]\lim_{x\to0} \ \frac{1-cosx}{(1-cosx)(1+cosx)(\sqrt{2}+\sqrt{1+cosx})}[/tex]
[tex]\lim_{x\to0} \ \frac{1}{(1+cosx)(\sqrt{2}+\sqrt{1+cosx})}=\frac{\sqrt{2}}{8}[/tex]
cũng là nhân liên hợp nè
ss chút
[tex]\lim_{x\to 0} \ \frac{\sqrt2-\sqrt{1+cosx}}{sin^2x} \\ \ \\ \ \\ \ \\ \ \\ \lim_{x\to 0} \ \frac{\frac{1-cosx}{\sqrt2+\sqrt{1+cosx}}}{sin^2x} \\ \ \\ \ \\ \ \\ \ \\ \lim_{x\to 0} \ \frac{\frac{2sin^2{\frac x2}}{\sqrt2+\sqrt{1+cosx}}}{sin^2x}\\ \ \\ \ \\ \ \\ \ \\ \lim_{x\to 0} \ \frac{\frac{(\frac{2sin{\frac x2}}{\frac x2})^2 . \ (\frac x2)^2}{\sqrt2+\sqrt{1+cosx}}}{(\frac{sinx}{x})^2 . \ x^2} \\ \ \\ \ \\ \ \\ \ \\ \ \\ \lim_{x\to 0} \ \frac{\frac{\frac x2}{\sqrt2+\sqrt{1+cosx}}}{x^2} \\ \ \\ \ \\ \ \\ \ \\ =....[/tex]
áp dụng [TEX]\frac{sinx}{x}=1[/TEX]
Last edited by a moderator: