a) Trước hết
[imath]A = \dfrac{x^3}{(x-y)(x-z)} + \dfrac{y^3}{(y-z)(y-x)} + \dfrac{z^3}{(z-x)(z-y)}[/imath]
[imath]= \dfrac{x^3(z-y) + y^3(x-z) + z^3(y-x)}{(x-y)(y-z)(z-x)}[/imath]
Ta có: [imath]x^3 (z-y) + y^3 (x-z) + z^3 (y-x)[/imath]
[imath]=x^3 (z-y) + y^3(x-y) + y^3 (y-z) + z^3 (y-x)[/imath]
[imath]= (x-y)(y^3 - z^3) + (y-z)(y^3 -x^3)[/imath]
[imath]= (x-y)(y-z)(y^2+yz+z^2) - (y-z)(x-y)(y^2 + yx +x^2)[/imath]
[imath]= (x-y)(y-z)(yz-yx + z^2 - x^2)[/imath]
[imath]= (x-y)(y-z)(z-x)(x+y+z)[/imath]
[imath]\Rightarrow A = x+y+z =2015[/imath]
-- Cần câu b không ta ? ---
Mời e ghé qua topic Tổng hợp kiến thức toán lớp 8