tiếp xúc tại điểm A thôi ạ

Hạ $AH \perp BC , O'I \perp OC$
$S_{ABC} = \dfrac{AH.BC}{2}$
Lại có $\dfrac{AF}{OC} = \dfrac{r}{R+r} \Leftrightarrow AF = \dfrac{r}{R+r}. R$
Tương tự $FH = \dfrac{R}{R+r}. r$
$AH = AF + FH = ...$
BCIO' là hình chữ nhật, nên $BC = O'I = \sqrt{(R+r)^2 - (R - r)^2}$
Suy ra $S$