Áp dụng BĐT Cauchy:
[imath]a+b \geq 2\sqrt{ab}[/imath]
[imath]=> a^2+b^2+2ab \geq 4ab[/imath]
[imath]=> a^2+b^2 \geq 2ab[/imath]
[imath]b^2+1 \geq 2b[/imath]
[imath]=> a^2+2b^2+3 \geq 2ab+2b+2[/imath]
[imath]=> \dfrac{1}{a^2+2b^2+3} \leq \dfrac{1}{2}.(\dfrac{1}{ab+b+1})[/imath]
CMTT: [imath]\dfrac{1}{b^2+2c^2+3} \leq \dfrac{1}{2}.(\dfrac{1}{bc+c+1})[/imath]
[imath]\dfrac{1}{c^2+2a^2+3} \leq \dfrac{1}{2}.(\dfrac{1}{ac+a+1})[/imath]
Cộng theo vế:
[imath]=>M \leq \dfrac{1}{2}.(\dfrac{1}{ab+b+1}+\dfrac{1}{bc+c+1}+\dfrac{1}{ac+a+1})[/imath]
[imath]=>M \leq \dfrac{1}{2}.(\dfrac{ac}{a+1+ac}+\dfrac{a}{1+ac+a}+\dfrac{1}{ac+a+1})[/imath]
[imath]=> M \leq \dfrac{1}{2}.(\dfrac{ac+a+1}{ac+a+1})[/imath]
[imath]=> M \leq \dfrac{1}{2}[/imath]
Dấu [imath]"="[/imath] xảy ra khi: [imath]a=b=c=1[/imath]
Vậy [imath]M_{Max}=\dfrac{1}{2}[/imath] khi [imath]a=b=c=1[/imath]