Có [tex]\left | 5a-6b+300 \right |^{2019}[/tex] [tex]\geq 0, (2a-3b)^{2020}\geq 0[/tex]
[tex]\Rightarrow[/tex] [tex]\left | 5a-6b+300 \right |^{2019}[/tex] + [tex](2a-3b)^{2020}=0\Leftrightarrow \left\{\begin{matrix} \left | 5a-6b+300 \right |^{2019}= 0& & \\ (2a-3b)^{2020} =0 & & \end{matrix}\right.[/tex] [tex]\Leftrightarrow \left\{\begin{matrix} 5a-6b+300=0 & & \\ 2a-3b =0& & \end{matrix}\right.[/tex] [tex]\Leftrightarrow \left\{\begin{matrix} 5a-2.3b+300=0 & & \\ 2a=3b & & \end{matrix}\right.[/tex] [tex]\Leftrightarrow \left\{\begin{matrix} 5a-4a=-300 & & \\ b=\frac{2a}{3} & & \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-300 & & \\ b=-200 & & \end{matrix}\right.[/tex]