tích phân

Q

quynhsieunhan

$I = \int\limits_{4}^{\sqrt{7}}\frac{1}{x(x^2 + 9)}dx$
CÓ: $\frac{1}{x(x^2 + 9)} = \frac{1}{9x} - \frac{x}{9(x^2 + 9)}$
\Rightarrow $I = \frac{1}{9}\int\limits_{4}^{\sqrt{7}}\frac{1}{x}dx - \frac{1}{9}\int\limits_{4}^{\sqrt{7}}\frac{x}{x^2 + 9}dx$
= $\frac{1}{9}\int\limits_{4}^{\sqrt{7}}\frac{1}{x}dx - \frac{1}{18}\int\limits_{4}^{\sqrt{7}}\frac{1}{x^2 + 9}d(x^2 + 9)$
đến đây dễ r :D
 
T

trantien.hocmai

$\text{nơi nào có tích phân thì nơi đó không thể thiếu trần tiến ta được} \\
\text{cách khác} \\$
$$I=\int \frac{dx}{x(x^2+9)}=\int \frac{xdx}{x^2(x^2+9)} \\
\text{đặt t=}x^2+9 \rightarrow dt=2xdx \rightarrow \frac{dt}{2}=xdx \\
\rightarrow I=\dfrac{1}{2}.\int \dfrac{dt}{(t-9)t}=\dfrac{1}{18} \int (\dfrac{1}{t-9}-\dfrac{1}{t})dt=\dfrac{1}{18}(\ln |t-9|-\ln |t|)+C$$
 
Last edited by a moderator:
V

vanbienhh3

$I = \frac{1}{{18}}\int\limits_4^{\sqrt 7 } {\frac{{{x^2} + 9}}{{{x^2}}}.\frac{{18xdx}}{{{{\left( {{x^2} + 9} \right)}^2}}}} = \frac{1}{{18}}\int\limits_4^{\sqrt 7 } {\frac{1}{{\frac{{{x^2}}}{{{x^2} + 9}}}}.d\left( {\frac{{{x^2}}}{{{x^2} + 9}}} \right)} = \frac{1}{{18}}\ln \frac{{{x^2}}}{{{x^2} + 9}}$:)>
 
Top Bottom