Mình tính nguyên hàm:
[TEX]{\color{Blue} I=\int \frac{\sqrt{1+x^2}}{x^2}dx=\int \frac{x^2}{x^3}.\sqrt{\frac{1+x^2}{x^2}}dx[/TEX]
Đặt [TEX]{\color{Blue} \sqrt{\frac{1+x^2}{x^2}}= t\Rightarrow \{ \frac{1}{x^2}+1=t^2 \\ x^2=\frac{1}{t^2-1}\Rightarrow \frac{1}{x^3}dx=-tdt[/TEX]
[TEX]{\color{Blue} I=-\int \frac{t^2dt}{t^2-1}=\int dt+\int \frac{dt}{t^2-1}=t+I'[/TEX]
Tính I'
Đặt [TEX]{\color{Blue} t=tanu \Rightarrow dt=\frac{1}{cos^2u} du[/TEX]
[TEX]{\color{Blue} I'=-\int \frac{(1+tan^2u)dtanu}{tan^2u}=-\int dtanu+\frac{1}{tanu}=-tanu+\frac{1}{tanu}[/TEX]