Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
[tex]-\sqrt{\frac{3}{3}}[/tex] chứ
xong rồi nha bạntại lác đó làm sai a
thứ looic lần đầu mình lên hỏi
ĐK: $x \geq \dfrac{3}{2}$
tau cụng bítĐK: $x \geq \dfrac{3}{2}$
$\sqrt{2(4x^2-x-6)}=\sqrt{2x-3}+\sqrt{2x^2+x-1}$
$\iff 2(4x^2-x-6)=2x-3+2x^2+x-1+2\sqrt{(2x-3)(2x^2+x-1)}$
$\iff 6x^2-5x-8=2\sqrt{(2x-1)(4x^2-8x+3)}$
$\iff 3(2x^2-x-3)-(2x-1)-2\sqrt{(2x-1)(4x^2-8x+3)}=0$
$\iff (\sqrt{2x^2-2x-3}-\sqrt{2x-1})(3\sqrt{2x^2-2x-3}+\sqrt{2x-1})=0$
... Đến đây bạn bình phương bình thường
cảm ơn bạn nhiềuĐK: $x \geq \dfrac{3}{2}$
$\sqrt{2(4x^2-x-6)}=\sqrt{2x-3}+\sqrt{2x^2+x-1}$
$\iff 2(4x^2-x-6)=2x-3+2x^2+x-1+2\sqrt{(2x-3)(2x^2+x-1)}$
$\iff 6x^2-5x-8=2\sqrt{(2x-1)(4x^2-8x+3)}$
$\iff 3(2x^2-x-3)-(2x-1)-2\sqrt{(2x-1)(4x^2-8x+3)}=0$
$\iff (\sqrt{2x^2-2x-3}-\sqrt{2x-1})(3\sqrt{2x^2-2x-3}+\sqrt{2x-1})=0$
... Đến đây bạn bình phương bình thường
cảm ơn bạn nhìu[tex]x^2-3x+1 =(-\frac{\sqrt{3}}{3})\sqrt{x^4+x^2+1} \Leftrightarrow x^2 -3x +1 = - \sqrt{\frac{x^4+x^2+1}{3}}[/tex](1)
VÌ [tex]-\sqrt{\frac{x^4+x^2+1}{3}}<0[/tex] =>[tex] x^2-3x+1 <0 [/tex] (2)
<=> [tex]\frac{3-\sqrt{5}}{2}<x<\frac{3+\sqrt{5}}{2}[/tex]
Ta có :
(1) => [tex](x^2-3x+1)^2= \frac{x^4+x^2+1}{3} \Leftrightarrow x^4+9x^2+1-6x^3-6x+2x^2=\frac{x^4+x^2+1}{3}[/tex]
[tex]\Leftrightarrow x^4-9x^3+16x^2-9x+1 =0 \Leftrightarrow (x-1) ^2(x^2-7x+1)=0 [/tex]
=> x= 1 (TM) . Vậy x=1 .
* Do hai nghiệm của [tex] (x^2-7x+1)=0 [/tex] ko thỏa mãn đk (2) nên loại