$\begin{array}{l}
\left\{ \begin{array}{l}
3\sqrt {x - 2} + \sqrt[3]{{2y + 2}} = 5\;\;(1)\\
3\sqrt {y - 2} + \sqrt[3]{{2x + 2}} = 5\;\;(2)
\end{array} \right.\\
dk:\left\{ \begin{array}{l}
x \ge 2\\
y \ge 2
\end{array} \right.\\
(1) - (2) = 3\left( {\sqrt {x - 2} - \sqrt {y - 2} } \right) + \sqrt[3]{{2y + 2}} - \sqrt[3]{{2x + 2}} = 0\\
\leftrightarrow \frac{{3x - 6 - 3y + 6}}{{\sqrt {x - 2} + \sqrt {y - 2} }} + \frac{{2y + 2 - 2x - 2}}{{\sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + \sqrt[3]{{\left( {2y + 2} \right)\left( {2x + 2} \right)}} + \sqrt[3]{{{{\left( {2x + 2} \right)}^2}}}}} = 0\\
\leftrightarrow \left( {x - y} \right)\left( {\frac{3}{{\sqrt {x - 2} + \sqrt {y - 2} }} - \frac{2}{{\sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + \sqrt[3]{{\left( {2y + 2} \right)\left( {2x + 2} \right)}} + \sqrt[3]{{{{\left( {2x + 2} \right)}^2}}}}}} \right) = 0\\
\leftrightarrow \left[ \begin{array}{l}
x = y\;\;(*)\\
S = 3\left( {\sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + \sqrt[3]{{\left( {2y + 2} \right)\left( {2x + 2} \right)}} + \sqrt[3]{{{{\left( {2x + 2} \right)}^2}}}} \right) - 2\left( {\sqrt {x - 2} + \sqrt {y - 2} } \right) = 0\;\;(**)
\end{array} \right.\\
do:\;x \ge 2\;y \ge 2\\
\to 3\sqrt[3]{{\left( {2y + 2} \right)\left( {2x + 2} \right)}} \ge 3\sqrt[3]{{36}} > 6\\
\cos i:\\
3\sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + 1 = \sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + \sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + \sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + 1 \ge 4\sqrt[4]{{{{\left( {2y + 2} \right)}^2}}} = 4\sqrt {2y + 2} > 4\sqrt {y + 2} \\
3\sqrt[3]{{{{\left( {2x + 2} \right)}^2}}} + 1 > 4\sqrt {x + 2} \\
\to S = 3\left( {\sqrt[3]{{{{\left( {2y + 2} \right)}^2}}} + \sqrt[3]{{\left( {2y + 2} \right)\left( {2x + 2} \right)}} + \sqrt[3]{{{{\left( {2x + 2} \right)}^2}}}} \right) - 2\left( {\sqrt {x - 2} + \sqrt {y - 2} } \right) > 4 + 4\sqrt {y + 2} + 4\sqrt {x + 2} - 2\sqrt {x - 2} - 2\sqrt {y - 2} \\
neu:\left\{ \begin{array}{l}
2 \le x \le 3\\
2 \le y \le 3
\end{array} \right.\\
\to \left\{ \begin{array}{l}
- \sqrt {x - 2} \ge - 1\\
- \sqrt {y - 2} \ge - 1
\end{array} \right. \to S > 0\\
neu:\left\{ \begin{array}{l}
x > 3 \to x + 2 > x - 2 > 1 \to \sqrt {x + 2} > \sqrt {x - 2} \\
y > 3 \to y + 2 > y - 2 > 1 \to \sqrt {y + 2} > \sqrt {y - 2}
\end{array} \right. \to S > 0\\
con\;hai\;truong\;hop\;nua\;tuong\;tu\; \to S > 0\\
\to phuong\;trinh\;vo\;nghiem\\
(*)x = y\\
\leftrightarrow ....
\end{array}$
sao không gõ công thức toán cho dễ mà phải chụp ảnh up lên thế
