R
rua_it
[tex]\mathrm{AM-GM} \Rightarrow LHS:=\sqrt[3]{{a^2}+\frac{1}{b^2}}+\sqrt[3]{{b^2}+\frac{1}{c^2}}+\sqrt[3]{{c^2}+\frac{1}{a^2}} \geq 3.\sqrt[9]{({a^2}+\frac{1}{b^2}).({b^2}+\frac{1}{c^2}).({c^2}+\frac{1}{a^2})}[/tex]mìk có bài nì nèk,,,,,,,,,,,,,,,júp mìk nhá...........
CMR: Với a,b,c>0..... thoả mãn [TEX]\sqrt{a}+\sqrt{b}+\sqrt{c}\geq 3\sqrt{2}[/TEX]
thì [TEX]\sqrt[3]{{a^2}+\frac{1}{b^2}}+\sqrt[3]{{b^2}+\frac{1}{c^2}}+\sqrt[3]{{c^2}+\frac{1}{a^2}}\geq 3\sqrt[3]{\frac{17}{4}}[/TEX]
Cần chứng minh [tex]({a^2}+\frac{1}{b^2}).({b^2}+\frac{1}{c^2}).({c^2}+\frac{1}{a^2}) \geq \frac{4913}{64}(1)[/tex]
[tex]\mathrm{Cauchy-Schwarz} \Rightarrow ({a^2}+\frac{1}{b^2})(\frac{1}{4}+4) \geq (\frac{a}{2}+\frac{2}{b})^2[/tex]
Xây dưng bài toán tương tự, cộng vế theo vế, ta có:
[tex]LHS(1): \geq (\frac{17}{4})^3.[(\frac{a}{2}+\frac{2}{b}). (\frac{b}{2}+\frac{2}{c}).(\frac{c}{2}+\frac{2}{a})]^2[/tex]
...