Không tính, hãy so sánh:
1) A = 202 và B = 272 - 252
2) C = 2002.2004 và D = 20032 - 1
3) E = (2 + 1)(22 + 1)(23 + 1)(216 + 1) và F = 232
4) G = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(310 + 1) và H = \dfrac{3^{32}}{2}2332
5) I = 12(52 + 1)(54 + 1)(58 + 1) ... (532 + 1) và K = 564 - 1
Giải thích chi tiết cho em với ạ. Em cảm ơn.
[tex]A=20^2=(2.10)^2=2^2.10^2=2.2.100=2.200\\B=27^2-25^2=(27-25)(27+25)=2.52\\200>52\Rightarrow 2.200>2.52\Leftrightarrow A>B[/tex]
[tex]C=2002.2004\\D=2003^2-1=(2003-1)(2003+1)=2002.2004\\2002.2004=2002.2004\Rightarrow C=D[/tex]
[tex]E=(2+1)(2^2+1)(2^3+1)(2^{16}+1)<(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)\\(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)\\=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)\\=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)\\=(2^8-1)(2^8+1)(2^{16}+1)\\=(2^{16}-1)(2^{16}-1)\\=2^{32}-1<2^{32}=F\\E<2^{32}-1<F \Rightarrow E<F[/tex]
[tex]G=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{10}+1)<(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)\\(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)\\=\frac{2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)}{2}\\=\frac{(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)}{2}\\=\frac{(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)}{2}\\=\frac{(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)}{2}\\=\frac{(3^8-1)(3^8+1)(3^{16}+1)}{2}\\=\frac{(3^{16}-1)(3^{16}+1)}{2}\\=\frac{3^{32}-1}{2}<\frac{3^{32}}{2}=H\\G<\frac{3^{32}-1}{2}<H\Rightarrow G<H[/tex]
[tex]I=12(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)(5^{32}+1)<24(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)(5^{32}+1)\\24(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)(5^{32}+1)\\=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^{16}+1)(5^{32}+1)\\=(5^4-1)(5^4+1)(5^8+1)(5^{16}+1)(5^{32}+1)\\=(5^8-1)(5^8+1)(5^{16}+1)(5^{32}+1)\\=(5^{16}-1)(5^{16}+1)(5^{32}+1)\\=(5^{32}-1)(5^{32}+1)\\=5^{64}-1=K\\\Rightarrow I<K[/tex]