Max-min

C

congchuaanhsang

1, Theo Cauchy ta có:

$a^2(1-a^2)^2=\dfrac{1}{2}.2a^2(1-a^2)(1-a^2)$ \leq $\dfrac{1}{2}(\dfrac{2a^2+1-a^2+1-a^2}{3})^3=\dfrac{4}{27}$

\Leftrightarrow $a(1-a^2)$\leq$\dfrac{2}{3\sqrt{3}}$ \Leftrightarrow $\dfrac{1}{a(1-a^2)}$ \geq $\dfrac{3\sqrt{3}}{2}$

\Leftrightarrow $\dfrac{a^2}{a(1-a^2)}$ \geq $\dfrac{3\sqrt{3}}{2}a^2$

\Leftrightarrow $\dfrac{a}{1-a^2}$ \geq $\dfrac{3\sqrt{3}}{2}a^2$

\Leftrightarrow $\dfrac{a}{b^2+c^2}$ \geq $\dfrac{3\sqrt{3}}{2}a^2$

Tương tự rồi cộng từng vế lại ta được:

VT \geq $\dfrac{3\sqrt{3}}{2}(a^2+b^2+c^2)=VP$
 
C

congchuaanhsang

1, Cách khác:

Ta luôn có: $(\sqrt{3}a-1)^2(\sqrt{3}a+\sqrt{2})$ \geq 0

\Leftrightarrow $\dfrac{3\sqrt{6}}{2}a(1-a^2)$ \leq $\sqrt{2}$

\Leftrightarrow $1-a^2$ \leq $\dfrac{2\sqrt{3}}{9a}$

\Leftrightarrow $b^2+c^2$ \leq $\dfrac{2\sqrt{3}}{9a}$

\Leftrightarrow $\dfrac{a}{b^2+c^2}$ \geq $\dfrac{3\sqrt{3}}{2}a^2$

Làm tiếp như cách trên
 
Top Bottom