[TEX]\sqrt{3}-2sin2x=sinx-\sqrt{3}cosx\\ \Leftrightarrow \sqrt{3}(1+cosx)=sinx(1+4cosx)\\ \Leftrightarrow 2\sqrt{3}cos^2{\frac{x}{2}}=2sin{\frac{x}{2}}cos {\frac{x}{2}}(1+4cosx)\\TH_1:\ cos{\frac{x}{2}}=0 \Leftrightarrow x= \pi+ k2\pi,k \in Z\\ TH_2:\ 2sin{\frac{x}{2}}(8cos^2{\frac{x}{2}}-3)-2\sqrt{3}cos{\frac{x}{2}}=0\\ \Leftrightarrow 8sin{\frac{x}{2}}cos^2{\frac{x}{2}}-3sin{\frac{x}{2}-\sqrt{3}cos{\frac{x}{2}}=0(de\ thay\ cos{\frac{x}{2}}\neq 0)[/TEX]
[TEX] \Leftrightarrow 8tan{\frac{x}{2}}-3tan{\frac{x}{2}}(1+tan^2{\frac{x}{2}})-\sqrt{3}(tan^2{\frac{x}{2}}+1)=0\\ \Leftrightarrow 3tan^3{\frac{x}{2}}-\sqrt{3}tan^2{\frac{x}{2}}+5tan{\frac{x}{2}}-\sqrt{3}=0 [/TEX]
Không nhầm thì vậy, bạn giải tiếp xem.