Bài này dùng bất đẳng thức quen thuộc
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \ge \dfrac{16}{a+b+c+d}$
Dễ dàng chứng minh bằng Cauchy
Áp dụng vào bài toán
$A=\dfrac{x}{y+z+t}+\dfrac{y}{z+t+x}+\dfrac{z}{t+x+y}+\dfrac{t}{x+y+z}+\dfrac{y+z+t}{x}+\dfrac{z+t+x}{y}+\dfrac{t+x+y}{z}+\dfrac{x+y+z}{t}$
$\Leftrightarrow A+8=(x+y+z+t)(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{t})+(x+y+z+t)(\dfrac{1}{y+z+t}+\dfrac{1}{z+t+x}+\dfrac{1}{t+x+y}+\dfrac{1}{x+y+z})$
$\Rightarrow A+8 \ge (x+y+z+t).\dfrac{16}{x+y+z+t}+(x+y+z+t).\dfrac{16}{y+z+t+z+t+x+t+x+y+x+y+z}$
$\Leftrightarrow A+8 \ge 16+\dfrac{16}{3}$
$\Leftrightarrow A \ge \dfrac{40}{3}$