Cho hình thang cân ABCD có AB//CD, AB = 4cm, CD = 10cm, AD = 5cm. Trên tia đối của tia BD lấy E sao cho BE = BD. Gọi H là chân đường vuông góc kẻ từ E đến DC. Tính CH
Kẽ: $AK\perp DC;BF\perp DC\\\Rightarrow AK=BF\\AB=KF=4(cm)\\DK=FC=\frac{DC-KF}{2}=\frac{10-4}{2}=\frac{6}{2}=3(cm)$
Có: $DF=DC-FC=10-3=7(cm)\\Xet \Delta ADK(\angle K=90^{\circ}):\\AD^2=AK^2+DK^2(d.ly Pytago)\\\Rightarrow 5^2=3^2+AK^2\\\Rightarrow AK^2=5^2-3^2\\\Rightarrow AK^2=16\\\Rightarrow AK=\sqrt{16}=4(cm)\\Xet \Delta DBF(\angle F=90^{\circ}):\\BD^2=BF^2+FD^2(d.ly Pytago)\\\Rightarrow BD^2=4^2+7^2\\\Rightarrow BD^2=65\\\Rightarrow BD=\sqrt{65}\approx 8,1(cm)\\\Rightarrow DE=2.BD=2.8,1=16,2(cm)$
Xét $\Delta DBF $ và $\Delta DEH$ có:
$\begin{Bmatrix}\angle F=\angle H\\\angle D: goc chung \end{Bmatrix}$
$\Rightarrow \Delta DBF\sim DEH(g.g)$
$\Rightarrow \frac{DB}{DE}=\frac{BF}{EH}$
$\Rightarrow \frac{8,1}{16,2}=\frac{4}{EH}\\\Rightarrow EH=\frac{4.16,2}{8,1}=8(cm)\\Xet \Delta DEH(\angle H=90^{\circ}):\\ED^2=EH^2+DH^2(d.ly Pytago)\\\Rightarrow 16,2^2=8^2+DH^2\\\Rightarrow DH^2=16,2^2-8^2\\\Leftrightarrow DH^2=198,44\\\Rightarrow DH=\sqrt{198,44}\approx 14,1(cm)\\\Rightarrow CH=DH-DC=14,1-10=4,1(cm)$