J
jerusalem
g) [TEX]sin^{8}x+cos^{8}x=2(sin^{10}x+cos^{10}x)+\frac{5}{4}cos2x[/TEX]
![]()
\Leftrightarrow[TEX]sin^8x+cos^8x=2[sin^8x(1-cos^2x)+cos^8(1-sin^2x)]+5/4cos2x[/TEX]
\Leftrightarrow[TEX]cos^8x.cos2x-sin^8x.cos2x+5/4cos2x=O[/TEX]
\Leftrightarrow[TEX]cos2x(cos^8x-sin^8x+5/4)=O[/TEX]
\Leftrightarrow[TEX]cos2x[(2cos^2x-1)(2cos^4x-2cos^2x+1)+5/4]=O[/TEX]
\Leftrightarrow[TEX]cos2x(2cos^6x-3cos^4x+2cos^2x+1/8)=O[/TEX]
\Leftrightarrow[TEX]\left[\begin{cos2x=O}\\{ 2cos^6x-3cos^4x+2cos^2x+1/8= O}[/TEX]
đặt [TEX]cos^2x=t[/TEX].giải như bt
h) [TEX]3tan^{3}x-tanx+\frac{3(1+sinx)}{cos^{2}x}-8cos^{2}(\frac{\pi }{4}-\frac{x}{2})=0[/TEX]
[TEX]tan x(3tan^2x-1)+[\frac{3}{1-sinx}-4(1+sin x)]=O[/TEX]
\Leftrightarrow[TEX]tan x(\frac{4sin^2x-1}{1-sin^2x})+\frac{4sin^2x-1}{1-sin x}=O[/TEX]
\Leftrightarrow[TEX]\frac{4sin^2x-1}{1-sin x}(\frac{tan x}{1+sin x}+1)=O[/TEX]
\Leftrightarrow[TEX]\frac{4sin^2x-1}{1-sin x}(\frac{tan x+sin x+1}{1+sin x})=O[/TEX]
\Leftrightarrow[TEX]\left[\begin{4sin^2x-1=O}\\{tan x+sin x+1 =O ($) } [/TEX]
giải ($)
[TEX]tan x+sin^2 x/2+cos^2 x/2+2sin x .cos x=O[/TEX]
\Leftrightarrow[TEX]( sin x/2+cos x/2)^2=-tan x[/TEX]
\Leftrightarrow[TEX]( sin x/2+cos x/2)^2=\frac{-2sin x/2.cos x/2}{(sin x/2+cos x/2)(sin x/2-cos x/2)}[/TEX]
\Leftrightarrow[TEX]( sin x/2+cos x/2)^3=-2sin x/2.cos^2 x/2-2sin^2 x/2.cos x/2[/TEX]
\Leftrightarrow[TEX](sin x/2+cos x/2)(1+2sinx)=O[/TEX]
mệt quá
Last edited by a moderator: