[ help me]PT lượng giác cực hay

H

hetientieu_nguoiyeucungban

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

[TEX]1.(cos2x-cos4x)^{2}=6+2sin3x[/TEX]

2.tìm [TEX]x\epsilon Z[/TEX] thỏa mãn [TEX] cos( \frac{\pi } {4}).(3x-\sqrt{9x^{2}-16x-80})=1[/TEX]

3.[TEX]2cosx+\sqrt{2}sin10x=3\sqrt{2}+2cos28x.sinx[/TEX]

4.[TEX]sin2x+2cos2x=1+sinx-4cosx[/TEX]

5.[TEX](\sqrt{1-cosx}+\sqrt{cosx}).cos2x=\frac{1}{2}sin4x[/TEX]

6[TEX]8\sqrt{2}cos^{6}x+2\sqrt{2}sin^{3}.sin3x-6\sqrt{2}cos\sqrt{4}x-1=0[/TEX]

7.[TEX]sin^{6}x+cos^{6}x=cos4x[/TEX]

:D:D:D:D:D
 
Last edited by a moderator:
C

connguoivietnam

7)
[TEX]sin^6x+cos^6x=cos4x[/TEX]

[TEX]sin^4x+cos^4x-sin^2xcos^2x=cos4x[/TEX]

[TEX]1-3cos^2xsin^2x=cos4x[/TEX]

[TEX]2sin^22x-3sin^2xcos^2x=0[/TEX]

[TEX]8sin^2xcos^2x-3sin^2xcos^2x=0[/TEX]

[TEX]5sin^2xcos^2x=0[/TEX]

4)
[TEX]sin2x+2cos2x=1+sinx-4cosx[/TEX]

[TEX]2sinxcosx+2(2cos^2x-1)=1+sinx-4cosx[/TEX]

[TEX]sinx(2cosx-1)+4cos^2x+4cosx-3=0[/TEX]

[TEX]sinx(2cosx-1)+(2cosx-1)(2cosx+3)=0[/TEX]

[TEX](2cosx-1)(sinx+2cosx+3)=0[/TEX]

5)
[TEX]1 \geq cosx \geq 0[/TEX]

[TEX](\sqrt{1-cosx}+\sqrt{cosx})cos2x=\frac{1}{2}sin4x[/TEX]

[TEX]cos2x(\sqrt{1-cosx}+\sqrt{cosx}-sin2x)=0[/TEX]

[TEX]cos2x=0[/TEX]

[TEX]\sqrt{1-cosx}+\sqrt{cosx}-sin2x=0[/TEX]

1)
[TEX](cos2x-cos4x)^2=6+2sin3x[/TEX]
 
Last edited by a moderator:
H

huutrang93

3.[TEX]2cosx+\sqrt{2}sin10x=3\sqrt{2}+2cos28x.sinx[/TEX]

bài này diễn đàn mình post quá nhiều lần rồi
h post lại

[TEX]2cosx+\sqrt{2}sin10x=3\sqrt{2}+2cos28x.sinx[/TEX]

[TEX]pt <=>2(cosx-cos28xsinx)=3\sqrt{2}-\sqrt{2}sin10x[/TEX]

[TEX]VT <=> 2(cosx-cos28xsinx)\leq2\sqrt{1+cos^228x} \leq2\sqrt{2}[/TEX][TEX]VP\geq3\sqrt{2}-\sqrt{2}=2\sqrt{2}[/TEX]

dấu "=" xảy ra khi
.....
[TEX]=> x=pi/4+kpi[/TEX]
 
Last edited by a moderator:
H

huutrang93

2.tìm [TEX]x\epsilon Z[/TEX] thỏa mãn [TEX] cos( \frac{\pi } {4}).(3x-\sqrt{9x^{2}-16x-80})=1[/TEX]

[TEX]<=> \frac{\ sqrt{2}} {2}(3x-sqrt{9x^2-16x-80})=1[/TEX]

[TEX]<=>3x-sqrt{9x^2-16x-80}=sqrt{2}[/TEX]

[TEX]<=>9x^2=9x^2-16x-80+2+2sqrt{2(9x^2-16x-80)}[/TEX]

[TEX]<=>16x+78=2sqrt{2(9x^2-16x-80)}[/TEX]

[TEX]<=>8x+39=sqrt{18x^2-32x-160}[/TEX]

[TEX]<=>64x^2+624x+1421=18x^2-32x-180[/TEX]

[TEX]<=>46x^2+656x+1601=0[/TEX]

bấm máy được 2 nghiệm lẻ (-3.12.... và-11.135)
kết hợp với đk đặt ở mỗi lần bình phương( tự đặt)
và đk x thuộc Z => không có giá trị x thoả y/c
 
H

hetientieu_nguoiyeucungban

1.[TEX]32cos^{6}x=1+cos6x[/TEX]

2.[TEX]sin^{2}2x-cos^{2}8x=sin(\frac{17\pi }{2}+10x)[/TEX]

3.[TEX]cos^{3}4x=cos3x.cos^{3}x+sin^{3}xsin3x[/TEX]

4.[TEX]sin^{8}+cos^{8}x=\frac{17}{16}cos^{2}2x[/TEX]

5.[TEX]cos^{4}x-cos2x+2sin^{6}x=0[/TEX]

6[TEX]cos^{4}x-cos^{4}(x+\frac{\pi }{4})=\frac{1}{4}[/TEX]

7.[TEX]\frac{sin^{10}x+cos^{10}x}{4}=\frac{sin^{6}x+cos^{6}x}{4sin^{2}2x+cos^{2}2x}[/TEX]

8.[TEX]2cos^{2}x+2cos^{2}2x+2cos^{2}3x-3=(2sin2x+1)cos4x[/TEX]

9.[TEX]cos3x+sin7x=2sin^{2}(\frac{5x}{2}+\frac{\pi }{4})-2cos^{2}\frac{9x}{2}[/TEX]
 
Last edited by a moderator:
H

huutrang93

6/ [TEX]8\sqrt{2}cos^{6}x+2\sqrt{2}sin^{3}.sin3x-6\sqrt{2}cos\sqrt{4}x-1=0[/TEX]

[TEX]8\sqrt{2}(1-sin^6x-3sin^2x+3sin^4x)+2sqrt{2}(3sinx-4sin^3x)sin^3x-6sqrt{2}(4sin^2x-4sin^4x)-1=0[/TEX]

[TEX]<=>8sqrt{2}-8sqrt{2}sin^6x-24sqrt{2}sin^2x+24sqrt{2}sin^4x+6sqrt{2}sin^4x-8sqrt{2}sin^6x-24sqrt{2}sin^2x+24sqrt{2}sin^4x-1=0[/TEX]

[TEX]<=>16sqrt{2}sin^6x-54sqrt{2}sin^4x+48sqrt{2}sin^2x-8sqrt{2}+1=0[/TEX]

đặt [TEX]sin^2x=t ; 0 \leq t \leq 1[/TEX]
quy pt về được [TEX]16sqrt{2}t^3-54sqrt{2}t^2+48sqrt{2}t-8sqrt{2}+1=0[/TEX]
giải pt tìm t=> x.........
 
Last edited by a moderator:
H

huutrang93

7.[TEX]\frac{sin^{10}x+cos^{10}x}{4}=\frac{sin^{6}x+cos^{6}x}{4sin^{2}2x+cos^{2}2x}[/TEX]

[TEX]VP<=>\frac{(sin^{2}x+cos^{2}x)^3-3sin^2xcos^2x(sin^2x+cos^2x)}{4(cos^22x+sin^22x)-3sin^22x}[/TEX]

[TEX]<=> \frac{1-\frac{3}{4}.sin^22x}{4-3sin^22x}=\frac{1}{4}[/TEX]

hay với mọi x ta luôn có [TEX]\frac{sin^{6}x+cos^{6}x}{4sin^{2}2x+cos^{2}2x}= \frac{1}{4}[/TEX]

do [TEX]\frac{sin^{10}x+cos^{10}x}{4}= \frac{(sin^{2}x+cos^{2}x)^5}{4} [/TEX]\leq
[TEX] \frac{sin^{2}x+cos^{2}x}{4} = \frac{sin^{6}x+cos^{6}x}{4}[/TEX] [TEX]= \frac{1}{4}[/TEX]

nên [TEX](*) <=> sin^{10}x=sin^2x[/TEX]
[TEX]cos^{10}x=cos^2x[/TEX]

=> x..............
 
D

duynhan1

1.[TEX]32cos^{6}x=1+cos6x[/TEX]

[TEX]\Leftrightarrow 4 ( 2 cos^2x)^3 = 1 + cos 3. 2x[/TEX]

[TEX]\Leftrightarrow 4 ( 1 + cos 2x)^3 = 1 + 4 cos^3 2x - 3 cos x[/TEX]

Mở ra rút gọn mũ 3 còn mũ 2. :D

2.[TEX]sin^{2}2x-cos^{2}8x=sin(\frac{17\pi }{2}+10x)[/TEX]

[TEX]\Leftrightarrow (1- cos 4x) -(1+ cos16x) = 2cos 10 x[/TEX]

[TEX]\Leftrightarrow - cos 10 x . cos 2x = 2 cos 10x[/TEX]

3.[TEX]cos^{3}4x=cos3x.cos^{3}x+sin^{3}xsin3x[/TEX]

[TEX]\Leftrightarrow 2cos^3 4x = cos^2 x( cos 4x + cos 2x) + sin^2 x( cos 2x - cos 4x) [/TEX]

[TEX]\Leftrightarrow 2 cos^3 4x = cos 4x cos 2x + cos 2x [/TEX]

[TEX]\Leftrightarrow 2 cos^3 4x = cos 2x ( cos 4x +1)[/TEX]
[TEX]\Leftrightarrow 2 cos^3 4x = 2 cos^3 2x[/TEX]
[TEX]\Leftrightarrow cos 4x = cos 2x[/TEX]

4.[TEX]sin^{8}x+cos^{8}x=\frac{17}{16}cos^{2}2x[/TEX]

[TEX](2sin^2 x )^4 + (2 cos ^2x )^4 = 17 cos^2 2x [/TEX]

[TEX]\Leftrightarrow (1- cos 2x )^4 + (1+cos 2x)^4 = 17 cos^2 2x[/TEX]

Mở ra giải pt trùng phương


5.[TEX]cos^{4}x-cos2x+2sin^{6}x=0[/TEX]

[TEX]\Leftrightarrow (2 cos^2x)^2 - 4 cos 2x + (2 sin^2 x)^3 = 0[/TEX]

[TEX]\Leftrightarrow ( cos 2x +1 )^2 - 4 cos 2x + (1- cos 2x )^3 = 0 [/TEX]

[TEX]\Leftrightarrow (cos 2x -1)^2 - (cos2x -1)^3 = 0[/TEX]


[TEX]6)cos^{4}x-cos^{4}(x+\frac{\pi }{4})=\frac{1}{4}[/TEX]
[TEX]\Leftrightarrow (2 cos^2x)^2 - (2 cos^2(x+\frac{\pi }{4}))^2 =1[/TEX]

[TEX]\Leftrightarrow (cos 2x +1)^2 - ( cos ( 2x + \frac{\pi}{2})+1)^2 =1[/TEX]

[TEX]\Leftrightarrow (cos 2x +1)^2 - ( 1- sin 2x )^2 =1[/TEX]

Đưa về cơ bản :)
 
Last edited by a moderator:
H

hetientieu_nguoiyeucungban

1 tìm x thuộc đoạn [0;14] ng đúng pt :

[TEX]sin3x+sin2x=5sinx[/TEX]

2.giải pt :

a) [TEX]2cos2x-sin2x=2(sinx +cosx)[/TEX]

b) [TEX]sin^{3}x-cos^{3}x=sinx +cosx[/TEX]

c) [TEX]1+tan2x=\frac{1-sin2x}{cos^{2}2x}[/TEX]

d) [TEX]sin^{2}x.cosx-cos2x+sinx-cos^{2}x.sinx-cosx=0[/TEX]

e) [TEX]cosx.cos\frac{x }{2}.cos\frac{3x}{2}-sinx.sin\frac{x}{2}.sin\frac{3x}{2}=\frac{1}{2}[/TEX]

f) [TEX]4cosx-2cos2x-cos4x=1[/TEX]

g) [TEX]sin^{8}x+cos^{8}x=2(sin^{10}x+cos^{10}x)+\frac{5}{4}cos2x[/TEX]

h) [TEX]3tan^{3}x-tanx+\frac{3(1+sinx)}{cos^{2}x}-8cos^{2}(\frac{\pi }{4}-\frac{x}{2})=0[/TEX]

i) [TEX]tan^{2}x=\frac{1-cos^{3}x}{1-sin^{3}x}[/TEX]

k) [TEX]tan^{2}x=\frac{1+cosx}{1-sinx}[/TEX]

:D:D:D:D:D
 
Last edited by a moderator:
H

huutrang93

b) [TEX]sin^{3}x-cos^{3}x=sinx +cosx[/TEX]

[TEX]<=> sin^3x-cos^3x=(sinx+cosx)(sin^2x+cos^2x)[/TEX]

[TEX]<=> sin^3x-cos^3x= sin^3x+sinxcos^2x+cosxsin^2x+cos^3x[/TEX]

[TEX]<=>sinxcosx(cosx+sinx)=0[/TEX]

[TEX]=>x=.................[/TEX]
 
C

connguoivietnam

1)
[TEX]sin3x+sin2x=5sinx[/TEX]

[TEX]3sinx-4sin^3x+sin2x=5sinx[/TEX]

[TEX]4sin^3x+2sinx-2sinxcosx=0[/TEX]

[TEX]2sin^3x+sinx(1-cosx)=0[/TEX]

[TEX]2sinx(1-cos^2x)+sinx(1-cosx)=0[/TEX]

[TEX](1-cosx)[2sinx(1+cosx)+sinx]=0[/TEX]

[TEX]cosx=1[/TEX]

[TEX]2sinx(1+cosx)+sinx=0[/TEX]

[TEX]3sinx+2sinxcosx=0[/TEX]

[TEX]sinx=0[/TEX]

[TEX]2cosx+3=0(L)[/TEX]

giải nghiệm cho khoảng [TEX][0;14][/TEX] là xong
 
Last edited by a moderator:
J

jerusalem

d) [TEX]sin^{2}x.cosx-cos2x+sinx-cos^{2}x.sinx-cosx=0[/TEX]
\Leftrightarrow[TEX]cosx-cos^3x-cos2x+sinx-sinx+sin^3x-cosx=O[/TEX]
\Leftrightarrow[TEX]sin^3x-cos^3x-2cos^2x+1=O[/TEX]
\Leftrightarrow[TEX]sin^3x-cos^3x+sin^2x-cos^2x=O[/TEX]
\Leftrightarrow[TEX](sinx-cosx)(sinx+1)(cosx+1)=O[/TEX]

f) [TEX]4cosx-2cos2x-cos4x=1[/TEX]
\Leftrightarrow[TEX]2cos^4x-cos^2x-cosx=O[/TEX]
\Leftrightarrow[TEX]cosx(cosx-1)=O[/TEX]
 
C

cattrang2601

2.giải pt :

a) [TEX]2cos2x-sin2x=2(sinx +cosx)[/TEX]

:D:D:D:D:D

[TEX]2cos2x-sin2x=2(sinx +cosx)[/TEX]

\Leftrightarrow[tex] 2( 1- 2{sin}^{2}x) -2sinxcosx - 2sinx - 2cosx =0[/tex]

\Leftrightarrow[tex] ( -4{sin}^{2}x -2sinx +2 ) - 2cosx(sinx +1)[/tex]

\Leftrightarrow[tex] 4(sinx +1)(sinx -0.5) - 2cosx(sinx +1)[/tex]

\Leftrightarrow[tex] (sinx +1 ) (2sinx -cosx -1)= 0[/tex]
\Leftrightarrow[TEX]\left[\begin{sinx +1=0}\\{2sinx -cosx -1 = 0} [/TEX]
 
J

jerusalem

c) [TEX]1+tan2x=\frac{1-sin2x}{cos^{2}2x}[/TEX]

:D:D:D:D:D
áp dụng ct[TEX] sin2a=\frac{2tana}{1+tan^2a}[/TEX] và [TEX]cos2a=\frac{1-tan^2a}{1+tan^2a}[/TEX]

\Leftrightarrow[TEX]\frac{1-tan^2a+2tana}{1-tan^2a}=\frac{(tana-1)^2.(1+tan^2a)^2}{(1+tan^2a)(tan^2a-1)^2}[/TEX]
rút gọn còn lại:
\Leftrightarrow[TEX](1+tana)(1-tan^2a+2tana)=(1-tana)(1+tan^2a)[/TEX]
tiếp tục rút gọn
\Leftrightarrow[TEX]tana=O[/TEX] (tự đặt điều kiện)

hơi khó nhìn nhỉ :D
 
Last edited by a moderator:
C

cattrang2601

2.giải pt :


c) [TEX]1+tan2x=\frac{1-sin2x}{cos^{2}2x}[/TEX]


:D:D:D:D:D

đk: cos2x#0
[TEX]1+tan2x=\frac{1-sin2x}{cos^{2}2x}[/TEX]

\Leftrightarrow[tex] 1+ \frac{sin2x}{cos2x} = \frac{1-sin2x}{cos^{2}2x}[/tex]

\Leftrightarrow[tex] \frac{sin2x +cos2x}{cos2x} = \frac{1-sin2x}{cos^{2}2x}[/tex]

\Leftrightarrow[tex] sin2xcos2x +{cos}^{2}2x = 1-sin2x[/tex]

\Leftrightarrow[tex] sin2xcos2x + 1- {sin}^{2}2x = 1 -sin2x[/tex]

\Leftrightarrow[tex] sin2x (cos2x - {sin}^{2}2x +1) =0[/tex]

\Leftrightarrow[tex] sin2x ( cos2x +{cos}^{2}2x )=0[/tex]

\Leftrightarrow[tex]sin2xcos2x(cos2x +1) =o[/tex]

\Leftrightarrow
[TEX]\left[\begin{sin2x=0}\\{ cos2x +1= 0} [/TEX]
 
C

cattrang2601

f) [TEX]4cosx-2cos2x-cos4x=1[/TEX]


:D:D:D:D:D


f) [TEX]4cosx-2cos2x-cos4x=1[/TEX]


\Leftrightarrow[tex] 4cosx - 2( 2{cos}^{2}x -1 ) - ( 2{cos}^{2}2x -1)= 1[/tex]

\Leftrightarrow[tex] 4cosx -4{cos}^{2}x +2 -2{cos}^{2}2x +1 = 1[/tex]

\Leftrightarrow[tex] 4cosx -4{cos}^{2}x +2 -2({ 2{cos}^{2}x -1 )} ^{2}) = 0[/tex]

\Leftrightarrow[tex] 4cosx -4{cos}^{2}x +2 - 8{cos}^{4}x +8{cos}^{2}x -2=0[/tex]

\Leftrightarrow[tex] cosx ( 2{cos}^{3}x -cosx -1 )=0[/tex]

\Leftrightarrow[tex] cosx ( cosx -1) (2{cos}^{2}x +2cosx +1)= 0[/tex]

\Leftrightarrow
[TEX]\left[\begin{cosx=0}\\{ cosx -1= 0} [/TEX]
 
C

cattrang2601

k) [TEX]tan^{2}x=\frac{1+cosx}{1-sinx}[/TEX]

:D:D:D:D:D

đk : cosx#0
k) [TEX]tan^{2}x=\frac{1+cosx}{1-sinx}[/TEX]

\Leftrightarrow[tex] \frac{{sin}^{2}x}{{cos}^{2}x} = \frac{1+cosx}{1-sinx}[/tex]

\Leftrightarrow[tex]{sin}^{2}x( 1-cosx) = {cos}^{2}x (1+cosx)[/tex]

\Leftrightarrow[tex]{sin}^{2}x -{sin}^{2}x.cosx -{cos}^{2}x - {cos}^{3}x =0[/tex]

\Leftrightarrow[tex] ( 1-{cos}^{2}x) - ( 1-{cos}^{2}x).cosx -{cos}^{2}x - {cos}^{3}x =0[/tex]

\Leftrightarrow[tex] 2{cos}^{2}x +cosx -1 =0[/tex]

[TEX]\left[\begin{cosx=-1}\\{cosx=1/2} [/TEX]
 
Top Bottom