Áp dụng :[TEX]\mid \vec a \mid + \mid \vec b \mid +\mid \vec c \mid [/TEX] \geq [TEX]\mid \vec a + \vec b + \vec c \mid[/TEX] Với: [TEX]\vec a =(a;b);.....[/TEX] vậy:[TEX]sqrt{a^2+b^2}+sqrt{c^2+b^2}+sqrt{a^2+c^2}[/TEX] \geq [TEX]sqrt{(a+b+c)^2+(a+b+c)^2}=sqrt2[/TEX] >-
Áp dụng :[TEX]\mid \vec a \mid + \mid \vec b \mid +\mid \vec c \mid [/TEX] \geq [TEX]\mid \vec a + \vec b + \vec c \mid[/TEX] Với: [TEX]\vec a =(a;b);.....[/TEX] vậy:[TEX]sqrt{a^2+b^2}+sqrt{c^2+b^2}+sqrt{a^2+c^2}[/TEX] \geq [TEX]sqrt{(a+b+c)^2+(a+b+c)^2}=sqrt2[/TEX] >-
Áp dụng :[TEX]\mid \vec a \mid + \mid \vec b \mid +\mid \vec c \mid [/TEX] \geq [TEX]\mid \vec a + \vec b + \vec c \mid[/TEX] Với: [TEX]\vec a =(a;b);.....[/TEX] vậy:[TEX]sqrt{a^2+b^2}+sqrt{c^2+b^2}+sqrt{a^2+c^2}[/TEX] \geq [TEX]sqrt{(a+b+c)^2+(a+b+c)^2}=sqrt2[/TEX] >-