ĐK : tự tìm
$4y^2 = 2 + \sqrt{199-x^2-2x} \\
\iff \sqrt{200-(x+1)^2} = 4y^2 - 2 > 0 \\
\iff 200-(x+1)^2 = 4(2y^2-1)^2$
$\begin{array}{ccccccc}
\iff & 4&(2y^2-1)^2 &+& (x+1)^2 &=& 200 \\
= & 4.&1^2 &+& (\pm 14)^2&& \\
= & 4.&7^2 &+& (\pm 2)^2 && \\
\end{array} \\
\implies \left[ \begin{array}{l}
\left\{ \begin{array}{l}
2y^2-1 = 1 \\
x+1 = \pm 14 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
2y^2-1 = 7 \\
x+1 = \pm 2 \\
\end{array} \right. \\
\end{array} \right. \\
\implies \left[ \begin{array}{l}
\left\{ \begin{array}{l}
y = \pm 1 \\
x = 13 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
y = \pm 1 \\
x = -15 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
y = \pm 2 \\
x = 1 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
y = \pm 2 \\
x = -3 \\
\end{array} \right. \\
\end{array} \right.$
Vậy $(x;y) = (13;\pm 1),(-15;\pm 1),(1;\pm 2),(-3;\pm 2)$