$(x+3)^3 - (x+1)^3 = 56 \\
\iff (x^3 + 9x^2 + 27x + 27) - (x^3 + 3x^2 + 3x + 1) - 56 = 0 \\
\iff x^3 + 9x^2 + 27x + 27 - x^3 - 3x^2 - 3x - 1 - 56 = 0 \\
\iff 6x^2 + 24x - 30 = 0 \\
\iff 6(x^2 + 4x - 5) = 0 \\
\iff 6(x^2 - x + 5x - 5) = 0 \\
\iff 6[x(x-1) + 5(x-1)] = 0 \\
\iff 6(x+5)(x-1) = 0 \\
\iff \ldots$
Vậy ...