ĐIỂM RƠI HAY ĐIỂM TỚI HẠN
khanhsy said:
[tex]\red Cho \ \ a,b,c>0\ \ a^5+b^5+c^5=3\ \ CMR:\ \ a^2+b^2+c^2\le 3[/tex]
Áp dụng [tex]AM-GM [/tex] cho năm số dương .
[tex]a^5+a^5+1+1+1\ge 5a^2[/tex]
[tex]\righ 2\sum_{cyc}a^5+9\ge 5\sum_{cyc}a^2[/tex]
[tex]\righ \sum_{cyc}a^2\le \frac{ 2\sum_{cyc}a^5+9}{5}[/tex]
[tex]\righ \sum_{cyc}a^2\le 3\ \ (dpcm)[/tex]
khanhsy said:
[tex]\red Cho \ \ a,b,c>0\ \ a^3+b^3=2\ \ CMR:\ \ a+b\le 2[/tex]
Áp dụng [tex]AM-GM [/tex] cho ba số dương .
[tex]a^3+1+1\ge 3a[/tex]
[tex]\righ \sum_{cyc}a^3+4\ge 3\sum_{cyc}a[/tex]
[tex]\righ \sum_{cyc}a\le \frac{ \sum_{cyc}a^3+4}{3}[/tex]
[tex]\righ \sum_{cyc}a\le 2\ \ (dpcm)[/tex]
khanhsy said:
[TEX]\red x,y,z[/TEX] là các số thực dương có tích bằng 1
[TEX]\red CMR:\ \ \sum_{cyclic} \frac{x^3}{(1+y)(1+z)} \geq \frac{3}{4} [/TEX]
Áp dụng [tex]AM-GM [/tex] cho ba số dương .
[TEX]\frac{x^3}{(1+y)(1+z)} +\frac{1+y}{8}+\frac{1+z}{8} \geq \frac{3x}{4}[/TEX]
[TEX]\righ \sum_{cyc} \frac{x^3}{(1+y)(1+z)} \geq \frac{1}{2}(x+y+z) -\frac{3}{4} \geq \frac{3}{4}[/TEX]
khanhsy said:
[tex]\red Cho a,b,c>0\ \ a+b+c=3 \ \ CMR: \ \ \sum_{cyclic}\frac{a^3}{b+1}\ge \frac{3}{2}[/tex]
Áp dụng [tex]AM-GM [/tex] cho ba số dương .
[tex]\frac{a^3}{b+1}+\frac{b+1}{4}+\frac{1}{2}\ge \frac{3}{2}a[/tex]
[tex]\righ \sum_{cyc}\frac{a^3}{b+1}+\frac{a+b+c+3}{4}+\frac{3}{2}\ge \frac{3}{2}(a+b+c) [/tex]
[tex]\righ \sum_{cyc}\frac{a^3}{b+1}\ge \frac{3}{2}\ \(dpcm)[/tex]
khanhsy said:
[tex]\red Cho\ \ a,b,c>0 \ \ CMR: \ \ \sum_{cyclic}\frac{a^3}{(a+b)(b+c)}\ge \frac{\sum_{cyclic } \sqrt{ab}}{4}[/tex]
Áp dụng [tex]AM-GM [/tex] cho ba số dương .
[tex]\frac{a^3}{(a+b)(b+c)}+\frac{a+b}{8}+\frac{b+c}{8}\ge \frac{3}{4} a[/tex]
[tex]\righ \sum_{cyc}\frac{a^3}{(a+b)(b+c)}+\frac{\sum_{cyc}a}{2}\ge \frac{3}{4}\sum_{cyc}a[/tex]
[tex]\righ \sum_{cyc}\frac{a^3}{(a+b)(b+c)}\ge \frac{1}{4}\sum_{cyc}a\ \ (!)[/tex]
Ta lại có theo [tex]AM-GM [/tex] thì :
[tex]a+b\ge 2\sqrt{ab}[/tex]
[tex]\righ \sum_{cyc}a\ge \sum_{cyc}\sqrt{ab}\ \ (!!)[/tex]
Từ [tex](!)&(!!)[/tex] suy ra [tex](dpcm)[/tex]
khanhsy said:
[TEX]\red Cho \ \ a,b,c> 0\ \ &\ \ a^2+b^2+c^2=3\ \ MIN_{T=\frac{a^5}{b^3+c^2}+\frac{b^5}{c^3+a^2}+\frac{c^5}{a^3+b^2}+a^4+b^4+c^4}[/TEX]
Dễ nhận thấy nếu [TEX]a^2+b^2+c^2=3[/TEX] thì:
[TEX]a^4+b^4+c^4\ge a^3+b^3+c^3\ge a^2+b^2+c^2 [/TEX]
[TEX]\rightarrow a^4+b^4+c^4\ge \frac{a^2+b^2+c^2}{4} +\frac{3(a^3+b^3+c^3)}{4} [/TEX]
[TEX]T\ge \frac{a^5}{b^3+c^2}+\frac{b^5}{c^3+a^2}+\frac{c^5}{a^3+b^2}+\frac{a^2+b^2+c^2}{4} +\frac{3(a^3+b^3+c^3)}{4}[/TEX]
[TEX]T\ge \(\frac{a^5}{b^3+c^2}+\frac{b^3+c^2}{4}+\frac{a^3}{2}\)+\(\frac{b^5}{c^3+a^2}+\frac{c^3+a^2}{4}+ \frac{b^3}{2} \)+\(\frac{c^5}{a^3+b^2}+\frac{a^3+b^2}{4}+\frac{c^3}{2}\)[/TEX]
[TEX]\rightarrow T\ge \frac{3(a^2+b^2+c^2)}{2} [/TEX]
[TEX]\rightarrow T\ge \frac{9}{2}[/TEX]
khanhsy said:
Để nhìn thấy rõ toàn cục bài bất đẳng thức trong việc chọn điểm rơi .Ta đi vào bài sau :[tex]\red Cho\ \ 1\ \ [b\ \ [a\ \ [N^+\ \ x,y>0\ \ x^a+y^a=n \ \ Min_{[x^b+y^b]}= 2.\(\frac{n}{2}\)^{\frac{b}{a}[/tex]
Áp dụng [tex]AM-GM [/tex] cho [tex]a [/tex] số dương .
[tex]\underbrace {x^a+x^a+...+x^a}_{b}+\underbrace {\frac{n}{2}+\frac{n}{2}+...+\frac{n}{2}}_{a-b}\ge a\sqrt[a]{x^{a.b}.\(\frac{n}{2}\)^{a-b}}=a.x^b.\(\frac{n}{2}\)^{\frac{a-b}{a}}[/tex]
[tex]\underbrace {y^a+y^a+...+y^a}_{b}+\underbrace {\frac{n}{2}+\frac{n}{2}+...+\frac{n}{2}}_{a-b}\ge a\sqrt[a]{y^{a.b}.\(\frac{n}{2}\)^{a-b}}=a.y^b.\(\frac{n}{2}\)^{\frac{a-b}{a}}[/tex]
[tex]\righ b(x^a+y^a)+(a-b)n\ge a.\(\frac{n}{2}\)^{\frac{a-b}{a}}.(x^b+y^b)[/tex]
[tex]\righ x^b+y^b\le 2.\(\frac{n}{2}\)^{\frac{b}{a}[/tex]
[tex]\righ Min__{[x^b+y^b]}= 2.\(\frac{n}{2}\)^{\frac{b}{a}\ \ (dpcm)[/tex]
khanhsy said:
[tex] Cho\red\ \ a,b,c >0\ \ &\ \ a+b+c=abc\ \ CMR:\ \ \sum_{cyclic}\frac{a^2}{a+bc }\ge \frac{a+b+c}{4}[/tex]
[tex] Cho\red\ \ x,y,z >0\ \ CMR:\ \ \frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\ge x+y+z[/tex]
[tex] Cho\red\ \ x,y,z >0\ \ CMR:\ \ x^2+y^2+z^2\ge \sqrt{2}(xy+xz)[/tex]
[tex] Cho\red\ \ x,y >2\ \&\ \ x+y=8\ \ CMR:\ \ \frac{x^4}{(y-2)^2}+\frac{y^4}{(x-2)^2}\ge 128[/tex]
Bạn nghỉ mấy bài nầy thế nào .Nó cũng dễ