\begin{array}{l} \Leftrightarrow \left( {a + b} \right)\tan \left( {\frac{{A + B}}{2}} \right) = a.{\mathop{\rm t}\nolimits} {\rm{anA}} + b.\tan B\\ \Leftrightarrow a\left( {{\mathop{\rm t}\nolimits} {\rm{anA}} - \tan \frac{{A + B}}{2}} \right) + b\left( {\tan B - \tan \frac{{A + B}}{2}} \right) = 0\\ \Leftrightarrow a\frac{{\sin \frac{{A - B}}{2}}}{{\cos A.c{\rm{os}}\frac{{A + B}}{2}}} - b\frac{{\sin \frac{{A - B}}{2}}}{{\cos B.c{\rm{os}}\frac{{A + B}}{2}}} = 0\\ \Leftrightarrow \left( {\frac{a}{{\cos A}} - \frac{b}{{\cos B}}} \right)\sin \frac{{A - B}}{2} = 0\\ \Leftrightarrow \left( {\sin A.\cos B - \sin B.\cos A} \right).\sin \frac{{A - B}}{2} = 0\\ \Leftrightarrow \sin \left( {A - B} \right).\sin \frac{{A - B}}{2} = 0 \Leftrightarrow A = B \end{array}