trên lớp mình được học dãy số xác định trên tập nguyên dương hay N*. Những một số người bạn của mình nói dãy số có thể xác định trên tập số thực hay R liệu điều đó có đúng không ạ?và nếu điều đó đúng vậy tại sao ta lại được học là dãy số xác định trên tập N* chứ không phải là R ?
tuanphanmanhĐỊNH NGHĨA DÃY SỐ:
Một dãy số là một hàm số $u$ có tập xác định là $\mathbb{N}^*$.
[imath]\mathbb{VD}[/imath]: [imath]u(n)=2n+1, u(n)=\cos n,....[/imath] nhưng điều kiện luôn là [imath]n \in \mathbb{N}^*[/imath] như vậy mới là một hàm số [imath]u[/imath] có tập xác định là [imath]\mathbb{N}^*[/imath]
Đôi khi người ta định nghĩa dãy số trên tập [imath]\mathbb{N}[/imath] nhưng ở THPT thì chỉ ở tập [imath]\mathbb{N}^*[/imath] nhưng mà dù định nghĩa trên tập [imath]\mathbb{N}^*[/imath] hay [imath]\mathbb{N}[/imath] thì các tính chất đều tương tự nhau.... ở đây mình thống nhất định nghĩa trên [imath]\mathbb{N}^*[/imath].
Nếu định nghĩa một dãy số trên tập số thực [imath]\mathbb{R}[/imath] thì định nghĩa sẽ là:
Một dãy số là một hàm số $u$ có tập xác định là $\mathbb{R}$.
Khi đó một dãy số có thể là [imath]u(n)=2n+1[/imath] với [imath]n \in \mathbb{R}[/imath] nhưng không khác gì hàm số [imath]f(x)=2x+1[/imath] với [imath]x \in \mathbb{R}[/imath]
Vậy khi định nghĩa dãy số trên tập [imath]\mathbb{R}[/imath] nó không có gì đặc biệt cả chỉ là gọi một hàm số bình thường có tập xác định là [imath]\mathbb{R}[/imath] là dãy số.
Qua đây mong bạn sẽ hiểu tại sao một dãy số được định nghĩa trên tập số [imath]\mathbb{N}^*[/imath] hoặc [imath]\mathbb{N}[/imath] mà không phải là [imath]\mathbb{R}[/imath].