Gợi ý. Khai triển $(a+b-c)(a-b+c)(-a+b+c) > 0$
Thế này phải không ???
Theo BĐT tam giác ta có:
[TEX]a+c>b, b+c>a, a+b>c[/TEX]
[TEX]=>a+c-b>0, b-a+c>0, b+a-c>0[/TEX]
[TEX]=> (a+c-b).(b-a+c).(b+a-c)>0[/TEX]
[TEX]<=> (a+c-b).[b^2-(a-c)^2]>0[/TEX]
[TEX]<=> -(a-c)^2.(a+c-b)+b^2.(a+c-b)>0[/TEX]
[TEX]<=> b.(a-c)^2-(a+c).(a-c)^2+b^2.(a+c-b)>0[/TEX]
[TEX]<=> b.(a-c)^2+(a+c).(a.c-a^2+a.c-c^2) +b^2.(a+c)-b^3>0[/TEX]
[TEX]<=> b.(a-c)^2+b^2.(a+c)+a.c.(a+c)-(a+c).(a^2-a.c+c^2)-b^3>0[/TEX]
[TEX]<=> a^2.b+a.b^2+b^2.c+b.c^2+c^2.a+c.a^2-a^3-b^3-c^3-2.a.b.c>0[/TEX]
[TEX]<=> (a^2+b^2-c^2).c+(b^2+c^2-a^2).a+(c^2+a^2-b^2).b>2.a.b.c[/TEX]
[TEX]<=> \frac{(a^2+b^2-c^2).c+(b^2+c^2-a^2).a+(c^2+a^2-b^2).b}{2.a.b.c}>1[/TEX]
[TEX]=> \frac{a^2+b^2-c^2}{2.a.b}+\frac{b^2+c^2-a^2}{2.b.c}+\frac{c^2+a^2-b^2}{2.c.a}>1[/TEX]
[TEX]=>[/TEX] ĐPCM