N
nuocmatthantien2


cho các số thực a,b,c khác 0
cm nếu $(a+b+c)^2=a^2+b^2+c^2$ thì
+)$\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+ \dfrac{c^2}{c^2+2ab}$
+)$\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab }{c^2+2ab}$
cm nếu $(a+b+c)^2=a^2+b^2+c^2$ thì
+)$\dfrac{a^2}{a^2+2bc}+\dfrac{b^2}{b^2+2ac}+ \dfrac{c^2}{c^2+2ab}$
+)$\dfrac{bc}{a^2+2bc}+\dfrac{ac}{b^2+2ac}+\dfrac{ab }{c^2+2ab}$
Last edited by a moderator: