a, Th1: α//AC,BD" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">α//AC,BDα//AC,BD
dc thiết diện là hbh MNPQ,M∈AB,N∈BC,P∈CD,Q∈AD" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">MNPQ,M∈AB,N∈BC,P∈CD,Q∈ADMNPQ,M∈AB,N∈BC,P∈CD,Q∈AD
P_{MNPQ} =2(MN+MQ}=2(\frac{BM.AC}{AB}+\frac{AM.BD}{AB} = 2b" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">P_{MNPQ} =2(MN+MQ}=2(\frac{BM.AC}{AB}+\frac{AM.BD}{AB} = 2bP_{MNPQ} =2(MN+MQ}=2(\frac{BM.AC}{AB}+\frac{AM.BD}{AB} = 2b
tương tự ta có
Th2: //AB, CD dc P =2a
th3: //AD, BC dc P=2c
có a>b>c \Rightarrow min, max
b, Xét TH (α
//AC,BD" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">(α)//AC,BD(α)//AC,BD
SMNPQmax" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">SMNPQmaxSMNPQmax \Leftrightarrow MN.MQ.sinNMQmax" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">MN.MQ.sinNMQmaxMN.MQ.sinNMQmax
do MQ//BD,MN//AC" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">MQ//BD,MN//ACMQ//BD,MN//AC \Rightarrow sinNMQ=const" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">sinNMQ=constsinNMQ=const
vậy S=AC.BMAB.BD.AMAB.sinNMQ=AC.BDAB2.BM.AM.SinNMQ≤AC.BDAB2(AM+BM2)2.sinNMQ=AC.BD4sinNMQ" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">S=AC.BMAB.BD.AMAB.sinNMQ=AC.BDAB2.BM.AM.SinNMQ≤AC.BDAB2(AM+BM2)2.sinNMQ=AC.BD4sinNMQS=AC.BMAB.BD.AMAB.sinNMQ=AC.BDAB2.BM.AM.SinNMQ≤AC.BDAB2(AM+BM2)2.sinNMQ=AC.BD4sinNMQ
\Rightarrow Smax" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">SmaxSmax \Leftrightarrow AM=BM" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">AM=BMAM=BM
\RightarrowM là trung diểm AB \RightarrowMNPQ là hình thoi
khi đó S=12MP.NQ" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">S=12MP.NQS=12MP.NQ
ta có ΔBCD=ACD" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔBCD=ACDΔBCD=ACD
BP , AP là 2 trung tuyến tương ứng
\RightarrowBP =AP, PM là trung tuyến tg ABP \RightarrowPm cũng là đường cao
AP2=AC2+AD22−CD24=b2+c22−a24" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">AP2=AC2+AD22−CD24=b2+c22−a24AP2=AC2+AD22−CD24=b2+c22−a24
AM2=a24" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">AM2=a24AM2=a24
\Rightarrow MP= sqrtb2+c2−a22" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">MP= sqrtb2+c2−a22MP= sqrtb2+c2−a22
tương tự NQ =\frac{{\sqrt{a^2+b^2-c^2}}{2}" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">NQ =\frac{{\sqrt{a^2+b^2-c^2}}{2}NQ =\frac{{\sqrt{a^2+b^2-c^2}}{2}
\RightarrowSMNPQ=18b2+c2−a2a2+b2−c2=S1" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">SMNPQ=18b2+c2−a2−−−−−−−−−−√a2+b2−c2−−−−−−−−−−√=S1SMNPQ=18b2+c2−a2a2+b2−c2=S1
TH2: //AB, CD có S_2= \frac{1}{8}\sqrt{(a^2+b^2-c^2)(a^2+c^2-b^2)" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">S_2= \frac{1}{8}\sqrt{(a^2+b^2-c^2)(a^2+c^2-b^2)S_2= \frac{1}{8}\sqrt{(a^2+b^2-c^2)(a^2+c^2-b^2)
Th3: // AD, BC có S_3 =\sqrt{(a^2+c^2-b^2)(b^2+c^2-a^2)" role="presentation" style="font-family: "Open Sans", sans-serif; display: inline; line-height: normal; font-size: 14.6667px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">S_3 =\sqrt{(a^2+c^2-b^2)(b^2+c^2-a^2)S_3 =\sqrt{(a^2+c^2-b^2)(b^2+c^2-a^2)