Toán 9 chứng minh

_Error404_

Học sinh chăm học
Thành viên
20 Tháng hai 2020
319
306
76
15
Hà Tĩnh
THCS Lê Văn Thiêm
[imath]\sum \frac{a}{\sqrt{b^3+1}}=\sum \frac{a}{\sqrt{(b+1)(b^2-b+1)}}\geq\sum \frac{2a}{b^2+2}=\sum a(1-\frac{b^2}{b^2+2})=\sum a(1-\frac{b^2}{\frac{b^2}{2}+\frac{b^2}{2}+2})\geq\sum a(1-\frac{b^2}{3\sqrt[3]{\frac{b^4}{2}}})=(a+b+c)-\frac{1}{3}(\sum a\sqrt[3]{2b^2})\geq 6-\frac{1}{9}(\sum a(b+b+2))=\frac{14}{3}-\frac{2}{9}(ab+bc+ca)\geq2[/imath]
 
Top Bottom