:v cách này mình tự nghĩ không biết có hay không

[tex]abc+a+c=b\Leftrightarrow b=\frac{a+c}{1-ac}[/tex]
Thay vào BT:
[tex]\frac{2}{1+a^{2}}-\frac{2}{1+b^{2}}+\frac{3}{1+c^{2}}\\=\frac{2}{1+a^{2}}-\frac{2}{1+(\frac{a+c}{1-ac})^2}+\frac{3}{1+c^{2}}\\=\frac{2}{1+a^{2}}-\frac{2(1-ac)^2}{1-2ac+a^2c^2+a^2+2ac+c^2}+\frac{3}{1+c^{2}}\\=\frac{2}{1+a^{2}}-\frac{2(1-ac)^2}{(a^2+1)(c^2+1)}+\frac{3}{1+c^{2}}\\=\frac{2(1+c^2)-2(a^2c^2-2ac+1)+3(1+a^2)}{(1+c^2)(1+a^2)}\\=\frac{-2a^2c^2+4ac+3a^2+2c^2+3}{(1+c^2)(1+a^2)}\\=\frac{4c^2+5a^2+5+4ac}{(a^2+1)(c^2+1)}-2[/tex]
Ta cần CM
[tex]\frac{4c^2+5a^2+5+4ac}{(a^2+1)(c^2+1)}-2\leq \frac{10}{3}\\\Leftrightarrow \frac{4c^2+5a^2+5+4ac}{(a^2+1)(c^2+1)}\leq \frac{16}{3}\\\Leftrightarrow 12c^2+15a^2+12ac+15\leq 16a^2c^2+16c^2+16a^2+16\\\Leftrightarrow 16a^2c^2+4c^2+a^2-12ac+1\geq 0\\\Leftrightarrow 16a^2c^2-8ac+1+4c^2-4ac+a^2\geq 0\\\Leftrightarrow (4ac-1)^2+(2c-a)^2\geq 0[/tex]
(Luôn đúng)