Ta có: [TEX]a^2 + 2b^2 + 3 = a^2 + b^2 + b^2 + 1 +2 \geq 2ab+2b+2[/TEX]
Khi đó: [tex]\frac{1}{a^2+2b^2+3} \leq \frac{1}{2ab+2b+2}=\frac{1}{2}.\frac{1}{ab+b+1}[/tex]
Chứng minh tương tự: [tex]\frac{1}{b^2+2c^2+3} \leq \frac{1}{2bc+2c+2}=\frac{1}{2}.\frac{1}{bc+c+1}[/tex]; [tex]\frac{1}{c^2+2a^2+3} \leq \frac{1}{2ca+2a+2}=\frac{1}{2}.\frac{1}{ca+a+1}[/tex]
Cộng theo vế: [tex]VT \leq \frac{1}{2} ( \frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1})=\frac{1}{2}(\frac{abc}{ab+ab^2c+abc}+\frac{1}{bc+c+1}+\frac{b}{1+ab+b})[/tex]
[tex]=\frac{1}{2} ( \frac{c}{bc+c+1}+\frac{1}{bc+c+1}+\frac{ab^2c}{abc+ab+ab^2c})=\frac{1}{2}.\frac{bc+c+1}{bc+c+1}=\frac{1}{2}[/tex]
Dấu "=" xảy ra khi [TEX]a=b=c=1[/TEX]