Cho x,y,z là các số dương. Chứng minh:
[tex]\frac{y}{x+3y}+\frac{z}{y+3z}+\frac{x}{z+3x}\leq \frac{3}{4}[/tex]
BĐT [tex]\Leftrightarrow \frac{3y}{x+3y}+\frac{3z}{y+3z}+\frac{3x}{z+3x}\leq \frac{9}{4}[/tex]
[tex]\Leftrightarrow 1-\frac{3y}{x+3y}+1-\frac{3z}{y+3z}+1-\frac{3x}{z+3x}\geq 3-\frac{9}{4}=\frac{3}{4}[/tex]
[tex]\Leftrightarrow \frac{x}{x+3y}+\frac{y}{y+3z}+\frac{z}{z+3x}\geq \frac{3}{4}[/tex]
Thật vậy [tex]\frac{x}{x+3y}+\frac{y}{y+3z}+\frac{z}{z+3x} \ge \frac{(x+y+z)^2}{x^2+y^2+z^2+3(xy+yz+zx)}=\frac{(x+y+z)^2}{(x+y+z)^2+(xy+yz+zx)}\ge \frac{(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=\frac{3}{4}[/tex] (đpcm)
Nếu còn thắc mắc gì thì bạn bảo mình nhé ^^