Bài 1 cách ngu người nè: Đặt t=xy+yx≥2t=xy+yx≥2t=\frac{x}{y}+\frac{y}{x}\geq 2
<=>(t−1)(t−2)=(xy+yx−1)(xy+yx−2)≥0(t−1)(t−2)=(xy+yx−1)(xy+yx−2)≥0(t-1)(t-2)=(\frac{x}{y}+\frac{y}{x}-1)(\frac{x}{y}+\frac{y}{x}-2)\geq 0
<=>t2−3t+2=(xy+yx)2−3(xy+yx)+2≥0t2−3t+2=(xy+yx)2−3(xy+yx)+2≥0t^{2}-3t+2=(\frac{x}{y}+\frac{y}{x})^{2}-3(\frac{x}{y}+\frac{y}{x})+2\geq 0
<=>(xy+yx)2+2≥3(xy+yx)(xy+yx)2+2≥3(xy+yx)(\frac{x}{y}+\frac{y}{x})^{2}+2\geq 3(\frac{x}{y}+\frac{y}{x})
<=>x2y2+y2x2+2.xy.yx+2=x2y2+y2x2+4≥3(xy+yx)x2y2+y2x2+2.xy.yx+2=x2y2+y2x2+4≥3(xy+yx)\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}+2.\frac{x}{y}.\frac{y}{x}+2=\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}+4\geq 3(\frac{x}{y}+\frac{y}{x})
Dấu = xảy ra <=>x=y