Áp dụng định lý Menelaus ta có:
[tex]\large \frac{MA}{MB}\times \frac{KB}{KC}\times \frac{NC}{NA}=1[/tex]
[tex]\large =>\frac{KB}{KC}=\frac{3}{2}[/tex] (Vì M là trung điểm AB, vectơNC = 2vectơCA =>[tex]\large NC=\frac{2}{3}NA[/tex] )
[tex]\large =>\vec{BK}=\frac{3}{5}\vec{BC}[/tex]
Ta có: [tex]\large \vec{AK}=\vec{AB}+\vec{BK}[/tex]
[tex]\large =>\vec{AK}=\vec{AB}+\frac{3}{5}\vec{BC}[/tex]
[tex]\large =>\vec{AK}=\vec{AB}+\frac{3}{5}\vec{BA}+\frac{3}{5}\vec{AC}[/tex] [tex]\large =>\vec{AK}=\vec{AB}+\frac{3}{5}\vec{BA}+\frac{3}{5}\vec{AC}[/tex]
[tex]\large =>\vec{AK}=\frac{2}{5}\vec{AB}+\frac{3}{5}\vec{AC}[/tex]