Cho x,y,z là các số dương.Tìm gtnn của biểu thức:
[TEX]P=\sqrt[3]{4(x^3+y^3)}+\sqrt[3]{4(y^3+z^3)}+\sqrt[3]{4(z^3+x^3)}+2(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2})[/TEX]
By AM-GM inequality (Cauchy), we have:
[TEX]\sqrt[3]{4(x^3+y^3)}+\sqrt[3]{4(y^3+z^3)}+\sqrt[3]{4(z^3+x^3)}\ge 3\sqrt[9]{\(4^3(x^3+y^3)(x\y^3+z^3)(z^3+x^3)\)}[/TEX], [TEX] \(1\)[/TEX]
and
[TEX]x^3+y^3 \ge 2\sqrt{x^3y^3}[/TEX], [TEX] \(2\)[/TEX]
[TEX]y^3+z^3 \ge 2\sqrt{y^3z^3}[/TEX], [TEX] \(3\)[/TEX]
[TEX]z^3+x^3 \ge 2\sqrt{z^3x^3}[/TEX], [TEX] \(4\)[/TEX]
Since , [TEX] \(1\)-\(4\)[/TEX], we have
[TEX]\sqrt[3]{4(x^3+y^3)}+\sqrt[3]{4(y^3+z^3)}+\sqrt[3]{4(z^3+x^3)}\ge 3\sqrt[9]{4^3.2^3x^3y^3z^3)}[/TEX]
Or
[TEX]\sqrt[3]{4(x^3+y^3)}+\sqrt[3]{4(y^3+z^3)}+\sqrt[3]{4(z^3+x^3)}\ge 6\sqrt[3]{xyz}[/TEX].
Once more, by AM-GM inequality (Cauchy), we have:
[TEX]2\(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\) \ge \frac{6}{\sqrt[3]{xyz}}[/TEX].
And [TEX]P \ge 6\sqrt[3]{xyz}+\frac{6}{\sqrt[3]{xyz}}\ge 12[/TEX]
The equality holds if and only if [TEX] x=y=z=1[/TEX]