Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Cho tam giác ABC ( AB < AC ) nội tiếp (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC tại (O) lần lượt tại F và K ( K khác A). Gọi M là hình chiếu của D lên AB
a. Chứng minh tứ giác BEHF nội tiếp
b. Gọi P là giao điểm của KD và (O) ( P khác K). Chứng minh tứ giác BCDE nội tiếp và [imath]\widehat{BDE} = \widehat{BPK}[/imath]
c. Gọi I là giao điểm của BP và ED. chứng minh I là trung điểm của ED
Mọi người giúp em câu c với ạ
Em cảm ơn:>
a. Chứng minh tứ giác BEHF nội tiếp
b. Gọi P là giao điểm của KD và (O) ( P khác K). Chứng minh tứ giác BCDE nội tiếp và [imath]\widehat{BDE} = \widehat{BPK}[/imath]
c. Gọi I là giao điểm của BP và ED. chứng minh I là trung điểm của ED
Mọi người giúp em câu c với ạ
Em cảm ơn:>
Attachments
Last edited by a moderator: