áp dụng buniacopski [tex](a^2b+b^2c+c^2a)^2\leq (a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2)\leq (a^2+b^2+c^2)\frac{ (a^2+b^2+c^2)}{3}^2=\frac{ (a^2+b^2+c^2)^3}{3}[/tex]
đặt [tex]t=a^2+b^2+c^2=>(a+b+c)^2=t+2(ab+bc+ca)=>ab+bc+ca=\frac{9-t}{3}[/tex] ta có [tex]t\geq (a+b+c)^2/3=3[/tex]
=>[tex]P\geq t+\frac{(9-t)\sqrt{3}}{2t\sqrt{t}}=\frac{t}{2}+\frac{t}{2}+\frac{9\sqrt{3}}{2t\sqrt{t}}-\frac{\sqrt{3}}{2\sqrt{t}}\geq 3\sqrt[3]{\frac{9\sqrt{3}t^2}{8t\sqrt{t}}}-\frac{1}{2}\geq 3*\frac{3}{2}-\frac{1}{2}=4[/tex] <vì t>=3>
dấu = xảy ra khi [tex]a=b=c=1[/tex]