Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
[BDT VASC] Chứng minh rằng với các số thực $a,b,c$ bất kì ta có bất đẳng thức: $(a^3+b^3+c^3)^2 \ge 3(a^3b+b^3c+c^3a)$
Ứng dụng: Cho $x,y,z$ là các số thực dương có tổng bằng $3$. Chứng minh rằng: $\sum \frac{x}{xy+1}\ge \frac{3}{2}$
Ứng dụng: Cho $x,y,z$ là các số thực dương có tổng bằng $3$. Chứng minh rằng: $\sum \frac{x}{xy+1}\ge \frac{3}{2}$