Bài 1.
sao bài này số liệu lẻ quá em à
li độ ban đầu của vật là: [TEX]x_{1}=A.cos\varphi =6[/TEX]
li độ của vật sau 1,57s là
[TEX]x=A.cos(\omega t+\varphi )=A.cos(\frac{2\pi }{T}.t+\varphi )[/TEX]
dựa theo công thức khai triển : cos(a+b)=cosa.cosb-sina.sinb
và công thức [TEX]cos^{2}\varphi +sin^{2}\varphi =1[/TEX] là sẽ ra ngay
Bài 2.
bài này cũng có thể dùng cách đó, gọi thời điểm ban đầu là [TEX]t_{0}[/TEX]
thời điểm tiếp theo là: [TEX]t+t_{0}[/TEX]
nhưng em phải chú ý, bài này có tính đến chiều vận tốc.
Thực ra, dạng bài này thường dùng đường tròn để giải là nhanh nhất, nhưng bài toán của em số liệu lẻ quá
(dùng đường tròn thì em biểu diễn vị trí ban đầu, ứng với 1 điểm trên đường tròn, chú ý chiều quay, biểu diễn góc quét được trong thời gian t là: [TEX]\Delta \varphi =\omega .t[/TEX]. như vậy em sẽ xác định được điểm tiếp theo trên đường tròn, ứng với vật đi tới đó, chiếu xuống, dùng chút kiến thức tam giác là giải ra được )