(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}):\frac{\sqrt{x}}{x-2\sqrt{x}+1}
=\frac{1+\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}}{(\sqrt{x}-1)^2}
=\frac{1+\sqrt{x}}{\sqrt{x}(\sqrt{x}-1)}.\frac{(\sqrt{x}-1)^2}{\sqrt{x}}
=\frac{(1+\sqrt{x})(\sqrt{x}-1)}{x}=\frac{x-1}{x}(đkxđ: x>0;x\neq 1)