Let enjoy it

Prove that
[TEX]\int_{0}^{\frac{\pi}{2}}f(sin2x) sin xdx=\sqrt{2} \int_{0}^{\frac{\pi}{4}} f(cos 2x)cos x dx[/TEX]
Đặt [TEX]\frac{\pi}{4}-x=u \to -dx=du[/TEX]
Suy ra: [TEX]I=\int_{0}^{\frac{\pi}{2}}f(sin2x) sin xdx[/TEX]
[TEX]=\int_{\frac{\pi}{4}}^{-\frac{\pi}{4}}f(sin(\frac{\pi}{2}-2x))sin(\frac{\pi}{4}-x)-du[/TEX]
[TEX]=\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}f(cos2u).\frac{1}{\sqrt{2}}(cosu-sinu)du[/TEX]
[TEX]=\frac{1}{\sqrt{2}}\int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}f(cos2u)cosudu-[/TEX]
[TEX]\frac{1}{\sqrt{2}} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}}f(cos2u)sinudu[/TEX]
Ta có
[TEX]f(cos2u)cosudu[/TEX] là hàm chẵn;[TEX]f(cos2u)sinu du[/TEX] là hàm lẻ
[TEX]\to I=2.\frac{1}{\sqrt{2}}\int_{0}^{\frac{\pi}{4}}f(cos2u)cosudu[/TEX]
đpcm