[tex]\left\{\begin{matrix} x+3=2.\sqrt{(3y-x)(y+1)}& \\ \sqrt{2y-3}-\sqrt{x-y} =x-3& \end{matrix}\right.[/tex]
@Mộc Nhãn
[tex]\left\{\begin{matrix} x+3=2.\sqrt{(3y-x)(y+1)} (1)& \\ \sqrt{2y-3}-\sqrt{x-y} =x-3(2)& \end{matrix}\right.[/tex]
ĐK:[tex]x\geq y\geq \frac{3}{2}[/tex]
Giải (1) ta có
[tex]x+3=2.\sqrt{(3y-x)(y+1)}[/tex]
[tex]\Leftrightarrow (\sqrt{y+1}-\sqrt{3y-x})(3.\sqrt{y+1}+\sqrt{3y-x})=0[/tex]
Vì [tex]3.\sqrt{y+1}+\sqrt{3y-x}>0;\forall x\geq y\geq \frac{3}{2}[/tex]
[tex]\Rightarrow \sqrt{y+1}-\sqrt{3y-x}=0[/tex]
[tex]\Rightarrow y+1=3y-x[/tex]
[tex]\Leftrightarrow y=\frac{x+1}{2}[/tex]
Thế vô (2) giải là xong