Ta có: [tex]x+2y\geq 3\Rightarrow 2y\geq 3-x\Rightarrow y\geq \frac{3-x}{2}[/tex]
[tex]\Rightarrow P=\frac{2x^2+y}{x}+y^2\geq \frac{2x^2+\frac{3-x}{2}}{x}+(\frac{3-x}{2})^2=\frac{1}{4}(x^2+2x+7+\frac{6}{x})[/tex]
Ta chọn [tex]\alpha[/tex] sao cho [tex]\alpha ^3-4\alpha 2+4\alpha -24=0[/tex]
Áp dụng BĐT Cauchy ta có: [tex]x^2+2x+7+\frac{6}{x}=(x+\frac{2-\alpha }{2})^2+\alpha x+\frac{6}{x}+7-\frac{(\alpha -2)^2}{4}\geq 2\sqrt{6}\alpha +7-\frac{(\alpha -2)^2}{4}[/tex]