[tex]x=-t\rightarrow dx=-dt\rightarrow I=-\int_{1}^{-1}\frac{\sqrt{1-t^{2}}dt}{1+3^{-t}}=\int_{-1}^{1}\frac{3^{t}\sqrt{1-t^{2}}dt}{1+3^{t}}=\int_{-1}^{1}\frac{3^{x}\sqrt{1-x^{2}}dx}{1+3^{x}}[/tex]
[tex]\rightarrow I+I=\int_{-1}^{1}\frac{\sqrt{1-x^{2}}dx}{1+3^{x}}+\int_{-1}^{1}\frac{3^{x}\sqrt{1-x^{2}}dx}{1+3^{x}}=\int_{-1}^{1}\frac{\sqrt{1-x^{2}}(1+3^{x})dx}{1+3^{x}}=\int_{-1}^{1}\sqrt{1-x^{2}}dx=\frac{\pi }{2}[/tex]
[tex]\rightarrow 2I=\frac{\pi }{2}\rightarrow I=\frac{\pi }{4}[/tex]