$\dfrac{n}{1} + \dfrac{n-1}{2} +...+ \dfrac{3}{n-2}+ \dfrac{2}{n-1} + \dfrac{1}{n}$
$=1 + n - 1 + \dfrac{n-1}{2} +...+ \dfrac{3}{n-2}+ \dfrac{2}{n-1} + \dfrac{1}{n}$
$=\dfrac{n + 1}{n + 1} + (\dfrac{n - 1}{2} + 1) + ... + (\dfrac{3}{n - 2} + 1) + (\dfrac{2}{n - 1} + 1) + (\dfrac{1}{n} + 1)$
$=\dfrac{n + 1}{n + 1} + \dfrac{n + 1}{2} + ... + \dfrac{n + 1}{n - 2} + \dfrac{n + 1}{n - 1} + \dfrac{n + 1}{n}$
$=(n + 1)(\dfrac{1}{n + 1} + \dfrac{1}{2} + ... + \dfrac{1}{n - 2} + \dfrac{1}{n - 1} + \dfrac{1}{n})$
Vậy kết quả cần tìm là n + 1