T
thientai_giangnamhaokiet
2.Cho a,b,c tm dk:
[tex]\left\{ \frac{1}{1+a}+ \frac{35}{35+2b} \le \ \frac{4c}{4c+57} [/tex]
(Vs a,b,c>0).Tính Min P=abc.
5.[tex]\left\{ \begin{array}{l} x,y,z,t>0 \\ xyzt+1 \end{array} \right. [/tex]
CM:[tex] \frac{1}{x^3(yz+zt+ty)} + \frac{1}{y^3(xt+xz+zt)} + \frac{1}{t^3(xz+xy+yz)} +\frac{1}{z^3(xt+xy+yt)} \ge \ \frac{4}{3}[/tex]
9.Tìm Min,Max của:
P= [tex]\frac{(1+x)^8+16x^4}{(1+x^2)^4}[/tex]
[tex]\left\{ \frac{1}{1+a}+ \frac{35}{35+2b} \le \ \frac{4c}{4c+57} [/tex]
(Vs a,b,c>0).Tính Min P=abc.
5.[tex]\left\{ \begin{array}{l} x,y,z,t>0 \\ xyzt+1 \end{array} \right. [/tex]
CM:[tex] \frac{1}{x^3(yz+zt+ty)} + \frac{1}{y^3(xt+xz+zt)} + \frac{1}{t^3(xz+xy+yz)} +\frac{1}{z^3(xt+xy+yt)} \ge \ \frac{4}{3}[/tex]
9.Tìm Min,Max của:
P= [tex]\frac{(1+x)^8+16x^4}{(1+x^2)^4}[/tex]
Last edited by a moderator: