Chứng minh đẳng thức sau:
[TEX]a) \frac{x^3-4x^2-x+4}{x^3-7x^2+14x-8}=\frac{x+1}{x-2}[/TEX]
[TEX]b) \frac{(x^2)y+2xy^2+y^3}{2x^2+xy-y^2}=\frac{xy+y^2}{2x-y}[/TEX]
[TEX]c) \frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x+1)^2}{x^2+1}[/TEX]
[TEX]a) \frac{x^3-4x^2-x+4}{x^3-7x^2+14x-8}=\frac{x+1}{x-2}[/TEX]
[TEX]VT= \frac{x^3-4x^2-x+4}{x^3-7x^2+14x-8}[/TEX][TEX]=\frac{x^2\left(x-4 \right)-\left(x-4 \right)}{\left(x-2 \right)\left(x^2+2x+4 \right)-7x\left(x-2 \right)}[/TEX]
[TEX]=\frac{\left(x-4 \right)\left(x-1 \right)\left(x+1 \right)}{\left(x-2 \right)\left(x^2-5x+4 \right) }[/TEX]
[TEX]=\frac{\left(x-4 \right)\left(x-1 \right)\left(x+1 \right)}{\left(x-2 \right)\left(x-4 \right)\left(x-1 \right) }[/TEX][TEX]=\frac{\left(x+1 \right)}{\left(x-2 \right) }=VP ( dccm)[/TEX]
[TEX]b) \frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\frac{xy+y^2}{2x-y}[/TEX]
[TEX]= \frac{xy(x+y)+y^2(x+y)}{x(x+y)+(x-y)(x+y)}[/TEX][TEX]= \frac{y(x+y)^2}{(x+y)(2x-y)}[/TEX]
[TEX] = \frac{y(x+y)}{(2x-y)} = \frac{xy-y^2}{2x-y}=VP(dccm)[/TEX]
[TEX]c) \frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x+1)^2}{x^2+1}[/TEX]
[TEX]VT = \frac{x^3(x+1)+(x+1)}{x^2(x^2+1)-x(x^2+1)+(x^2+1)}[/TEX]
[TEX]\frac{(x+1)^2(x^2-x+1)}{(x^2+1)(x^2-x+1})[/TEX][TEX]\frac{(x+1)^2}{x^2+1}=VP (dccm)[/TEX]