a) $\vec{AO} = \vec{OC}$
b) $AC = \dfrac{AB}{\cos 45^\circ} = a\sqrt{2}$. Suy ra $AO = BO = CO = DO = \dfrac{a\sqrt{2}}2$
$2\vec{AM} = \vec{AO} + \vec{AB}$. Bình phương lên ra $4AM^2 = AO^2 + AB^2 + 2\vec{AO} \cdot \vec{AB} = AO^2 + AB^2 + 2 AO \cdot AB \cos 45^\circ = \dfrac{2a^2}4 + a^2 + 2 \cdot \dfrac{a\sqrt{2}}2 \cdot a \cdot \dfrac{\sqrt{2}}2 = \dfrac{5a^2}2$
Suy ra $AM = \dfrac{a\sqrt{10}}4$
$2\vec{MN} = \vec{MC} + \vec{MD} = \vec{MB} + \vec{BC} + \vec{MO} + \vec{OD} = \vec{BC} + \vec{OD}$
Bình phương lên ra $4MN^2 = BC^2 + OD^2 + 2\vec{BC} \cdot \vec{OD} = BC^2 + OD^2 + 2BC \cdot OD \cos 45^\circ = \ldots = \dfrac{5a^2}2$
Suy ra $MN = \dfrac{a\sqrt{10}}4$