Áp dụng tính chất dãy tỉ số bằng nhau ta có
$\dfrac{a}{x+y}=\dfrac{5}{x+z}=\dfrac{a+5}{2x+y+z}$
\Rightarrow $2x+y+z=\dfrac{a+5}{\dfrac{5}{x+z}}$
$\dfrac{a}{x+y}=\dfrac{5}{x+z}=\dfrac{5-a}{z-y}$
\Rightarrow $z-y=\dfrac{5-a}{\dfrac{5}{x+z}}$
$\dfrac{25}{(x+z)^2}=\dfrac{16}{(z-y)(2x+y+z)}=\dfrac{16.\dfrac{25}{(x+z)^2}}{(5-a)(5+a)}$
\Rightarrow $16=25-a^2$
\Leftrightarrow $a= \pm3$
$P=\dfrac{(a^5+1)(a-2)}{a^5+1}=a-2$