[Toán9] Tính

M

minhtuyb

Ta có:
[TEX]a^4+\frac{1}{4}=(a^2+\frac{1}{2})^2-a^2=(a^2+\frac{1}{2}-a)(a^2+\frac{1}{2}+a)[/TEX]
\Rightarrow
[TEX]A=\frac{(2^2+\frac{1}{2}-2)(2^2+\frac{1}{2}+2)(4^2+\frac{1}{2}-4)(4^2+\frac{1}{2}+4)....(10^2+\frac{1}{2}-10)(10^2+\frac{1}{2}+10)}{(1^2+\frac{1}{2}-1)(1^2+\frac{1}{2}+1)(3^2+\frac{1}{2}+3)(3^2+\frac{1}{2}-36)...(9^2+\frac{1}{2}-9)(9^2+\frac{1}{2}+9)}[/TEX]
Mặt khác: [TEX](k+1)^2-(k+1)+\frac{1}{2}=k^2+k+\frac{1}{2}[/TEX]
\Rightarrow
[TEX]A=\frac{10^2+\frac{1}{2}+10}{1^2+\frac{1}{2}-1}=221[/TEX]

Phương pháp tương tự bài này bạn ạ :D.............................................

 
H

hn3

Tổng quát :[TEX]A_0=\frac{(1^4+\frac{1}{4})(3^4+\frac{1}{4})...((2n+1)^4+\frac{1}{4})}{(2^4+\frac{1}{4})(4^4+\frac{1}{4})...((2n+2)^4+\frac{1}{4})}[/TEX]
với [TEX]n \in N^*[/TEX]

Với [TEX]k \in N*[/TEX] . Ta có :
[TEX]k^4+\frac{1}{4}=\frac{4k^4+1}{4}=\frac{(2k^2-2k+1)(2k^2+2k+1)}{4}=\frac{[(k-1)^2+k^2][(k+1)^2+k^2]}{4} (1)[/TEX]

Sử dụng [TEX](1)[/TEX] lên [TEX]A_0[/TEX] . Ta có :

[TEX]A_0=\frac{(0^2+1^2)(1^2+2^2)...[(2n+1)^2+(2n+2)^2]}{(1^2+2^2)(2^2+3^2)...[(2n+2)^2+(2n+3)^2]}=\frac{1}{(2n+2)^2+(2n+3)^2}[/TEX]

Với [TEX]n=1002[/TEX] , ta có :

[TEX]A=\frac{1}{2006^2+2007^2}=\frac{1}{8052085}[/TEX]


@};-
 
Last edited by a moderator:
Top Bottom