[Toán7]Tìm giá trị của biến trong các tỉ lệ thức

H

huuthuyenrop2

Đề sai
$\dfrac{a}{b}=\dfrac{b}{c}= \dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\\Rightarrow (\dfrac{a+b+c}{b+c+d})^3=(\dfrac{a}{b})^3$
$(\dfrac{a+b+c}{b+c+d})^3=(\dfrac{a}{b})^3 =\frac{a}{b}.\frac{b}{c}.\frac{c}{d} = \frac{a}{d}$
 
T

thinhrost1

Đề sai
$\dfrac{a}{b}=\dfrac{b}{c}= \dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\\Rightarrow (\dfrac{a+b+c}{b+c+d})^3=(\dfrac{a}{b})^3$
$(\dfrac{a+b+c}{b+c+d})^3=(\dfrac{a}{b})^3 =\frac{a}{b}.\frac{b}{c}.\frac{c}{d} = \frac{a}{d}$


$\dfrac{a}{b}=\dfrac{b}{c}= \dfrac{c}{d}=k\\\Rightarrow a=bk\\\Rightarrow b=ck\\\Rightarrow c=dk\\\Rightarrow \dfrac{a+b+c}{b+c+d}=\dfrac{k(b+c+d)}{b+c+d}=k= \dfrac{a}{b}$
Sau đó tính lập phương
 
Top Bottom