R
rua_it


(1+x2)2(1+y2)2(x2−y2)(1−x2y2)[TEX]\sum \frac{x}{1+x^2} \leq \frac{3}{2} \leq\sum \frac{1}{x+1}[/TEX]
13. [TEX]\forall x,y \in R[/TEX], CM:
[TEX] \frac{-1}{4} \leq \frac{(x^2-y^2)(1-x^2y^2)}{(1+x^2)^2 (1+y^2)^2} \leq \frac{1}{4} [/TEX]
=(1+x2)2(1+y2)2x2−x4y2−y2+x2y4
=(1+x2)2(1+y2)2(1+y2)2.x2−(1+x2)2(1+y2)2(1+x2)2.y2
=(x2+1)2x2−(y2+1)2y2
[tex]Dat: \left{\begin{x=tana}\\{y=tanb}[/tex]
⇒(tan2a+1)2tan2a−(tan2b+1)2tan2b
=cos4a.tan2a−cos4b.tan2b=cos4a.cos2asin2a−cos4b.cos2bsin2b
=cos2a.sin2a−cos2b.sin2b
=4sin22a−sin22b
⇒ba^ˊtđẳngthứcca^ˋnchứngminh[tex]⇔∣4sin22a−sin22b∣≤41
Thật vậy, ta luôn cóa:
41≥4sin22a
41≥4sin22b
Kết hợp ta cóa đpcm.